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Abstract— Recently, a growing number of work design unsu-
pervised paradigms for point cloud processing to alleviate the
limitation of expensive manual annotation and poor transfer-
ability of supervised methods. Among them, CrossPoint follows
the contrastive learning framework and exploits image and
point cloud data for unsupervised point cloud understand-
ing. Although the promising performance is presented, the
unbalanced architecture makes it unnecessarily complex and
inefficient. For example, the image branch in CrossPoint is
∼8.3x heavier than the point cloud branch leading to higher
complexity and latency. To address this problem, in this paper,
we propose a lightweight Vision-and-Pointcloud Transformer
(ViPFormer) to unify image and point cloud processing in
a single architecture. ViPFormer learns in an unsupervised
manner by optimizing intra-modal and cross-modal contrastive
objectives. Then the pretrained model is transferred to various
downstream tasks, including 3D shape classification and se-
mantic segmentation. Experiments on different datasets show
ViPFormer surpasses previous state-of-the-art unsupervised
methods with higher accuracy, lower model complexity and
runtime latency. Finally, the effectiveness of each component
in ViPFormer is validated by extensive ablation studies. The
implementation of the proposed method is available at https:
//github.com/auniquesun/ViPFormer.

I. INTRODUCTION

Point cloud understanding is a crucial problem which has
attracted widespread attention for its values in autonomous
driving, mixed reality, and robotics. There are three common
tasks in point cloud understanding: 3D object classifica-
tion [1], [2], semantic segmentation [3], [4], [5] and object
detection [6], [7], [8], [9]. A large portion of previous
methods design different neural networks and learn from
large-scale annotated data for point cloud understanding
tasks. However, point cloud labels are rare in most scenarios
and acquiring them is time-consuming and expensive.

Hence, in recent years, researchers have begun to shift
their attention to developing unsupervised methods for point
cloud understanding, without the need of hand-crafted an-
notations. Unsupervised methods are designed in different
ways, such as auto-encoders [10], mask auto-encoders [11],
[12], reconstruction [13], occlusion completion [14], [15],
GANs [16], [17], [18] and contrastive learning [19], [20],
[21], [22], [23], etc.

Currently, a growing number of methods embrace con-
trastive learning because it is a simple yet effective frame-
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Fig. 1: Comparison of classification accuracy and the number
of parameters of different unsupervised methods on Model-
Net40 (M) and ScanObjectNN (S), respectively.

work and has shown improvements in vision [24] and
language processing [25]. This framework can be easily
extended to incorporate multi-modal data to further exploit
richer semantics in multi-modal data to improve perfor-
mances. Inspired by the success of vision + language [26],
[27] and video + audio [28], [29], point cloud understanding
powered by cross-modal data has drawn research interests.

CrossPoint [22] takes images and point clouds as inputs
and follows the contrastive framework for unsupervised point
cloud processing. It utilizes ResNet50 [30] as image feature
extractor and PointNet [31]/DGCNN [32] as point cloud
feature extractor. [33] uses CNN and U-Net [34] architecture
in the image branch and PointNet++ [35] architecture in
the point cloud branch for contrastive learning. Although
promising performances are obtained, the unbalanced image
and point cloud processing architecture makes them unneces-
sarily complex and inefficient. For example, in [22], the point
cloud branch has 3M parameters while the image branch has
25M. The image processing branch is ∼8.3x heavier than the
point cloud one and consumes much more time.

The different and unbalanced architecture when dealing
with data from different modalities is often neglected in
academic studies but is a critical problem in practice because
it severely hinders efficiency. However, it is possible to
design a unified and efficient architecture to process cross-
modal data since Transformer [36] has shown the flexibility
and superiority in vision [37], [38], [24] and language [39],
[40], [41] modeling. And recently, Point-BERT [11] and
Point-MAE [42] show point clouds can be sampled to groups
then processed by Transformer and the performances are
promising.

In this paper, we propose an efficient Vision-and-
Pointcloud Transformer (ViPFormer) for unsupervised point
cloud understanding. ViPFormer unifies image and point
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cloud processing in a single architecture, which ensures the
two branches have the same size and complexity. Then it
follows the contrastive learning framework to optimize image
and point cloud feature representations. Finally, the learned
representations are transferred to target tasks like 3D point
cloud classification and semantic segmentation.

ViPFormer is evaluated on a wide range of point cloud
understanding tasks, including synthetic and real-world 3D
shape classification, object part segmentation. Results show
it not only reduces the model complexity and running latency
but also outperforms all existing unsupervised methods. The
major contributions of this paper are summarized as follows:

• We propose ViPFormer, handling image and point cloud
data in a unified architecture, simplifies the model
complexity, reduces running latency and boosts overall
performances for unsupervised point cloud understand-
ing.

• We show that ViPFormer can be generalized better
to different tasks by simultaneously optimizing intra-
modal and cross-modal contrastive objectives.

• The proposed method is validated on various down-
stream tasks, e.g., it achieves 90.7% classification accu-
racy on ScanObjectNN, leading CrossPoint by 9%, and
surpassing the previous best performing unsupervised
method by 0.7% with ∼77% fewer parameters. Simi-
larly, ViPFormer reaches a 93.9% score on ModelNet40,
outperforming the previous state-of-the-art method and
reducing the number of parameters by 24%.

• We conduct extensive ablation studies to clarify the
advantages of the architecture design, contrastive opti-
mization objectives, and unsupervised learning strategy.

II. RELATED WORK

Unsupervised Point Cloud Understanding Unsupervised
learning becomes more and more popular since it can unleash
the potential of large-scale unlabeled data and save consid-
erable costs. According to the pretext task, unsupervised
methods for point cloud understanding can be classified
into generative models and discriminative models. Generative
models usually learn the latent representations of point
clouds by predicting some parts or all of the input data. The
assumption is that only after the model understands the point
cloud can it predict the occluded parts or generate the entire
point cloud. Auto-encoders like FoldingNet [10], GANs like
LRGM [17], URL [18] and 3D GAN [16], reconstruction
methods like JigSaw [13], cTree [43], all of them generate
a whole point cloud and maximize the similarity with the
input point cloud. Mask encoders like OcCo [14], Point-
BERT [11], Point-MAE [12] complete the masked parts of
a point cloud to keep it same as the input. On the other
hand, the discriminative models aim to learn discriminative
features from different object/semantic categories. Most of
them follow the contrastive learning framework [19], [20],
[21], [44], [23], [22], where CrossPoint [22] is the most
relevant to us since it also fuses cross-modal data, images
and point clouds, for point cloud understanding. However,
the unbalanced feature extractors in CrossPoint caused much

higher running latency and model complexity. Instead, we
propose Vision-and-Pointcloud Transformer to unify image
and point cloud processing in a single architecture, reduce
latency and boost performance.

Architecture for Image and Pointcloud Processing An
image consists of regular and dense pixel grids, while a
point cloud is a set of irregular, sparse and unordered points.
The huge differences make it difficult to process images
and point clouds in the same way. Researchers developed
different architectures for image and point cloud process-
ing. In many cases, CNNs are the first choices of image
processing and PointNet [31] and its variants [35], [45] are
good starts for point cloud processing. However, the situation
has changed since the advent of Transformer [36]. Due to
the notable improvements, Transformer quickly became the
de facto standard architecture for language understanding
tasks [39], [40], [41] then entered vision [46], [37], [38],
[24] and 3D field [47], [48], [49], [50], [42]. Guo et al. and
Zhao et al. proposed PCT [51] and Point Transformer [4],
respectively, but their architectures were different from the
standard Transformer [36] and can not be generalized to
vision modality. Perceiver [52] and PerceiverIO [53] have
taken important steps toward general architecture for various
modalities (audio, image, point cloud). However, Perceiver
and PerceiverIO learn in a supervised fashion. Differently,
the proposed ViPFormer unifies image and point cloud
processing in a single architecture and learns from large-
scale unlabeled data.

III. METHODOLOGY

In this section, firstly, we introduce the overall architecture
of ViPFormer. Secondly, we elaborate on its unsupervised
learning strategy.

A. The Overall Architecture of ViPFormer

As Fig. 2 shows, ViPFormer consists of three components,
which are a lightweight Input Adapter, Transformer Encoder
and Output Adapter. In image and point cloud branches,
modules with the same color are identical. And the images
and point clouds are serialized in different ways.

Image and Point Cloud Preparing To exploit the power
of Transformer [36] we need to convert images and point
clouds into sequence data as Transformer requires. Inspired
by ViT [37], we divide an image into small patches and
then flatten them into a sequence. For example, an image
I is of size H ×W × C1 and the patch size is Q, we can
generate an image patch sequence xi ∈ RM×(Q2·C1), where
M = HW/Q2.

For a point cloud P of size N ×C2, we convert it into a
patch sequence as follows [11], [12]. First, the farthest point
sampling (FPS) is applied to P to get G centers. Second, for
each center, we search its k nearest neighbors (kNN) in P
to aggregate local geometry information, resulting in a patch
sequence xp ∈ RG×(k·C2).

Input Adapter We design a lightweight image patch
adapter EI and a point patch adapter EP to project the
sequences to high dimensional feature representations. EI
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Fig. 2: The overall architecture of ViPFormer.

∈ R(Q2·C1)×D is a linear layer and EP is a multi-layer
perception (MLP). The outputs are denoted as image patch
embeddings zi and point patch embeddings zp.

zi = xiEI , zp = xpEP (1)

Before being fed into Encoder, the position information is
injected to zi and zp by adding the image patch position
embeddings Epos

I and point patch position embeddings Epos
P .

zi = zi + Epos
I , zp = zp + Epos

P (2)

Encoder The image and point cloud branches share
the Encoder architecture, which ensures image and point
cloud processing have balanced complexity and low latency.
ViPFormer Encoder consists of L stacked multi-head self-
attention (MSA) and MLP layers. MLP has two layers with
a GELU non-linear activation. LayerNorm (LN) is applied
before MSA and MLP layers, while Dropout is applied after
them.

ẑl = Dropout(MSA(LN(zl−1))) + zl−1, l = 1...L (3)

zl = Dropout(MLP(LN(ẑl))) + ẑl, l = 1...L (4)

Before proceeding, the output sequence of ViPFormer En-
coder needs to be converted into an object-level feature. We
implement it by concatenating the max and mean value of
zL.

r = Concat(Max(zL),Mean(zL)) (5)

Output Adapter The image and point cloud branches also
share the Output Adapter. As suggested by SimCLR [54],
a learnable nonlinear transformation between the encoder
and the contrastive loss can improve the quality of feature
representations. The Output Adapter is implemented by two
consecutive Linear layers, preceding with BatchNorm (BN)
and ReLU.

r̂ = Linear(ReLU(BN(r))) (6)

o = Linear(ReLU(BN(r̂))) (7)

At this point, the input image I and point cloud P are
transformed into image feature f = oI and point cloud
feature p = oP . We can use these features for unsupervised
contrastive learning.

B. Unsupervised Contrastive Pretraining of ViPFormer

We conduct unsupervised pretraining for ViPFormer by
introducing two contrastive objectives, intra-modal contrast
and cross-modal contrast. They are formulated as follows.

The Intra-Modal Contrastive (IMC) Objective injects
ViPFormer with the ability to resist data transformations and
small perturbations (e.g., translation, rotation, jittering) to
the same objects while maximizing the distance of different
objects in feature space. This strategy will make the pre-
trained model insensitive to random noises and generalize
better. Specifically, a point cloud P is transformed by two
data augmentations t1 and t2, resulting in P t1 and P t2 .
After going through ViPFormer, their feature representations
pt1=ot1P and pt2=ot2

P are obtained. The IMC objective Limc

is formulated by NT-Xent loss [54]:

l(i,t1,t2)=−log
exp(s(pt1

i ,p
t2
i )/τ)

N∑
k=1
k 6=i

exp(s(pt1
i ,p

t1
k )/τ)+

N∑
k=1

exp(s(pt1
i ,p

t2
k )/τ)

(8)

Limc =
1

2N

N∑
i=1

(l(i, t1, t2) + l(i, t2, t1)) (9)

where N is the batch size, τ is the temperature coefficient
and s(·) represents the cosine similarity.

The Cross-Modal Contrastive (CMC) Objective max-
imizes the agreement of feature representations of paired
images and point clouds, while minimizing that of unpaired
ones in the same feature space. ViPFormer achieves this goal
only when it understands the information contained in both
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modalities. Similarly, the CMC objective Lcmc is formulated
by NT-Xent loss [54]:

l(i,p, f)=−log exp(s(pi, fi)/τ)
N∑

k=1
k 6=i

exp(s(pi,pk)/τ)+
N∑

k=1

exp(s(pi, fk)/τ)

(10)

Lcmc =
1

2N

N∑
i=1

(l(i,p, f) + l(i, f,p)) (11)

N , τ and s(·) have the same meaning as those in Eq. 8.
During pretraining, ViPFormer combines IMC and CMC

as the overall loss. A balancing factor α is deployed between
two objectives as the cross-modal loss Lcmc is harder to
optimize and usually several times bigger than the intra-
modal loss Limc.

L = Limc + αLcmc (12)

IV. EXPERIMENTS

In this section, firstly, we elaborate on the pretraining
settings of ViPFormer. Then the pretrained ViPFormer is
transferred to various downstream tasks to evaluate its perfor-
mances. Thirdly, the effectiveness of different components in
ViPFormer is validated by extensive ablation studies. Finally,
the predictions of ViPFormer on different tasks are visualized
for a better understanding.

A. Pretraining Settings

Datasets We use the same dataset as in [22]. The point
clouds and images come from ShapeNet [55] and DISN [56].
There are 43,783 point clouds and each point cloud P
corresponds to 24 rendered images, from which an image
I is randomly selected to pair with P . During pretraining,
point cloud P contains 2048 points and the corresponding
image I is resized to 144×144×3. In FPS and kNN, the
point cloud is divided into G=128 centers and k=32 nearest
neighbors are retrieved for each center. The image patch size
Q is set to 12.

Architecture In Input Adapter, the dimension of
point/image patch embedding is projected to 384. In Encoder,
there are L=9 stacked MSA and MLP layers. All MSA layers
have 6 heads. The widening ratio of the MLP hidden layer
is 4. In Output Adapter, the 2-layer MLP is of size {768,
384, 384}. We justify the design choices of the architecture
through controlled experiments in Section IV-C.1.

Optimization We pretrain ViPFormer for 300 epochs,
adopting AdamW [57] as the optimizer and CosineAnneal-
ingWarmupRestarts [58] as the learning rate scheduler. The
restart interval is 100 epochs and the warmup period is
the first 5 epochs. The learning rate scales linearly to peak
during each warmup, then decays with the cosine annealing
schedule. The initial learning rate peak is 0.001, multiplied
by 0.6 after each interval. The balancing factor α is set to
1, which works well. We record the best pretrained model
according to the zero-shot accuracy on ModelNet40 [59].

B. Model Complexity, Latency and Performance on Down-
stream Tasks

In this part, the pretrained ViPFormer is transferred to
various downstream tasks to evaluate its complexity, latency
and performance. These metrics are critical dimensions for
assessing point cloud understanding methods. Complexity
is reflected by a model’s number of parameters (#Params).
Latency is counted by running time and performance is
subject to overall accuracy (OA) in the classification task
and mean class-wise Intersection of Union (mIoU) in the
segmentation task. We compare with previous state-of-the-
art unsupervised methods.

Point Cloud Classification The experiments are con-
ducted on two widely used datasets: ScanObjectNN [60]
and ModelNet40 [59]. ScanObjectNN contains 2880 objects
from 15 categories. It is challenging because objects in this
dataset are usually cluttered with background or are partial
due to occlusions. ModelNet40 is a synthetic point cloud
dataset, including 12308 objects across 40 categories. We use
the same settings as previous work [19], [20], [14], [22] to
sample 1024 points to represent a 3D object. We reimplement
previous methods according to the released codes since they
do not report the #Params and latency. For latency, we
consider two stages (Pretrain and Finetune) and count the
running time of a single epoch in each stage.

For the ScanObjectNN [60] dataset, all methods are fine-
tuned on it and the results are recorded in Tab. I. The best
score is in bold black and the second best score is marked in
blue. ViPFormer not only outperforms previous state-of-the-
art Point-MAE by 0.7% in classification accuracy but also
reduces 76.9% #Params and runs ∼2.6x faster than Point-
MAE.

TABLE I: Comparison of model complexity, latency and
performance with existing unsupervised methods on ScanOb-
jectNN.

Method
#Params Latency OA

Pretrain Finetune
(M) (s) (ms) (%)

FoldingNet [10] 2.0 – – 81.0
PointContrast [19] 37.9 – – 79.6
DepthContrast [20] 8.2 – – 80.4
OcCo [14] 3.5 ∼600.0 16,100 83.3
CrossPoint [22] 27.7 946.0 14,000 81.7
Point-BERT [11] 39.1 633.5 3,973 87.4
Point-MAE [12] 22.1 576.0 3,612 90.0

ViPFormer 5.1 22.2 1,015 90.7

The classification results on ModelNet40 are shown in
Table II. The Pretrain latency is not changed because pre-
training is independent of the downstream datasets, including
ScanObjectNN and ModelNet40. ModelNet40 is a larger
dataset so finetuning on it consumes more time. ViPFormer
achieves higher classification accuracy with lower model
complexity and runtime latency. It leads Point-MAE by 0.7%
accuracy while reducing #Params by 24.1%.

Object Part Segmentation We also transfer ViPFormer
to the task of object part segmentation. The experiments
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TABLE II: Comparison of model complexity, latency and
performance with existing unsupervised methods on Model-
Net40.

Method
#Params Latency OA

Pretrain Finetune
(M) (s) (ms) (%)

FoldingNet [10] 2.0 – – 90.6
PointContrast [19] 37.9 – – 90.0
DepthContrast [20] 8.2 – – 89.2
OcCo [14] 3.5 ∼600.0 39,295 92.5
CrossPoint [22] 27.7 946.0 35,258 90.3
Point-BERT [11] 39.1 633.5 10,329 93.0
Point-MAE [12] 22.1 576.0 9,344 93.2

ViPFormer 16.7 60.9 4,198 93.9

are conducted on the ShapeNetPart [61] dataset which con-
tains 16881 point clouds and each point cloud consists of
2048 points. Objects in ShapeNetPart are divided into 16
categories and 50 annotated parts. For a fair comparison,
we follow previous work [11] [12] to add a simple part
segmentation head on ViPFormer Encoder. The pretrained
weights of ViPFormer are used to initialize the part segmen-
tation model. In addition to the above metrics, mean class-
wise IoU (mIoU) is added to evaluate the part segmentation
performance. The results are reported in Tab. III. ViPFormer
reaches comparable OA and mIoU with best performing
Point-MAE while having lower model complexity.

TABLE III: Object part segmentation on ShapeNetPart.

Method #Params Latency OA mIoU
(M) (s) (%) (%)

PointContrast [19] 37.9 – – –
OcCo [14] 1.5 32.0 93.9 79.7
CrossPoint [22] 27.5 80.0 93.8 84.3
Point-BERT [11] 44.1 58.8 – 84.1
Point-MAE [12] 27.1 46.3 94.8 84.7

ViPFormer 26.8 42.1 94.8 84.7

Few-shot Object Classification Few-shot evaluation is
used to validate the transferability of a pretrained model
with limited labeled data. The conventional setting is “N -
way, K-shot” [20], [14], [22]. Under this setting, N classes
and K samples in a downstream task dataset are randomly
selected for training an SVM model of the linear kernel.
The test score on the downstream task given by SVM
can reflect the quality of the pretrained model as the in-
puts to the SVM model are the features extracted by the
pretrained model. Here the downstream task datasets are
ModelNet40 and ScanObjectNN, respectively. We perform
10 runs for each “N -way, K-shot” and compute their mean
and standard deviation. The results are shown in Table IV.
On ModelNet40, ViPFormer achieves comparable accuracy
with previous strong baselines, whereas it shows consis-
tent improvements on ScanObjectNN. The IMC and CMC
objectives enable ViPFormer to understand the information
contained in both modalities, so it can better deal with the
challenging scenarios in ScanObjectNN.

TABLE IV: Comparison of few-shot classification accuracy
with existing methods on ModelNet40 and ScanObjectNN.

Method 5-way 10-way
10-shot 20-shot 10-shot 20-shot

ModelNet40
OcCo [14] 90.6±2.8 92.5±1.9 82.9±1.3 86.5±2.2
CrossPoint [22] 91.0±2.9 95.0±3.4 82.2±6.5 87.8±3.0
ViPFormer 91.1±7.2 93.4±4.5 80.8±4.2 87.1±5.8

ScanObjectNN
OcCo [14] 72.4±1.4 77.2±1.4 57.0±1.3 61.6±1.2
CrossPoint [22] 72.5±8.3 79.0±1.2 59.4±4.0 67.8±4.4
ViPFormer 74.2±7.0 82.2±4.9 63.5±3.8 70.9±3.7

C. Ablation Studies

Ablation studies are conducted to 1) justify the architecture
of ViPFormer, 2) demonstrate the effectiveness of IMC and
CMC optimization objectives, and 3) analyze the advantages
of the pretrain-finetune strategy over training from scratch.

1) Architecture: The controlled variables of ViPFormer
architecture are the number of self-attention layers
(#SA Layers), the widening ratio of the MLP hidden layer
(MLP ratio), the number of attention heads (#Heads),
the sequence length (#Length) and the model dimension
(D model). For different architectures, the accuracy of the
pretrain-finetune scheme is reported on ModelNet40 and
ScanObjectNN, respectively, shown in Tab. V. The overall
trend is the larger the model, the better the performance.
We choose the best-performing architecture to compare with
other methods.

2) Contrastive Optimization Objectives: The effectiveness
of proposed IMC and CMC contrastive objectives are eval-
uated by training ViPFormer in three modes: i) only use
IMC, ii) only use CMC, and iii) use IMC and CMC together.
The experiments are conducted on different learning stages
(Pretrain vs. Finetune) and different datasets (ModelNet40
vs. ScanObjectNN). The results are shown in Tab. VI.
Apparently, the combination of IMC and CMC optimization
objectives significantly improves the model performance for
target tasks across different datasets.

3) Learning Strategies: The differences between two
kinds of learning strategies, Train from scratch and Pretrain-
Finetune, are also investigated. As Tab. VII shows, The
Pretrain-Finetune strategy outperforms Train from scratch
by 1.9% and 4.1% on ModelNet40 and ScanObjectNN,
respectively. The results indicate the initialization provided
by the pretrained ViPFormer really helps the model find
better directions and solutions in downstream tasks.

D. Visualization

Object Part Segmentation We conduct experiments on
ShapeNetPart [61] to visualize the predictions of ViPFormer
to different object parts. This dataset has 16 object categories
and we randomly select one object from each category.
ViPFormer predicts part labels for all points in the selected
object. Then different part labels are mapped to different
colors. As Fig. 3 presents, ViPFormer successfully handles
different objects and segments their parts in most cases.
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TABLE V: Ablation Study: Model Architecture.

#SA Layers 7 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9
MLP ratio 2 2 2 2 4 4 4 4 2 2 2 2 4 4 4 4
#Heads 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6
#Length 96 128 96 128 96 128 96 128 96 128 96 128 96 128 96 128
D model 256 256 256 256 256 256 256 256 384 384 384 384 384 384 384 384

Accuracy
ModelNet40 91.5 91.5 91.5 92.5 93.2 91.0 92.7 91.3 93.0 93.2 92.0 92.2 92.2 92.2 93.2 93.9
ScanObjectNN 84.5 83.5 86.6 90.7 85.6 85.6 86.6 87.6 88.7 84.5 84.5 89.7 89.7 88.7 89.7 89.7

TABLE VI: Ablation Study: Performance comparison on
ModelNet40 (M) and ScanObjectNN (S) when using dif-
ferent contrastive objectives.

Modality Types Pretrain Finetune
OAM OAS OAM OAS

IMC only 86.4 76.4 91.3 87.6
CMC only 87.3 66.4 91.3 81.4
IMC & CMC 87.0 75.7 93.9 89.7

TABLE VII: Ablation Study: Comparison of the classi-
fication accuracy using Pretrain-Finetune and Train-from-
scratch strategy. The used datasets are ModelNet40 (M) and
ScanObjectNN (S).

Learning Strategy OAM OAS

Train from scratch 92.0 85.6
Pretrain-Finetune 93.9 89.7

(a) Airplane (b) Chair (c) Earphone (d) Mug

(e) Rocket (f) Bag (g) Guitar (h) Lamp

(i) Knife (j) Pistol (k) Skateboard (l) Motorbike

(m) Table (n) Cap (o) Laptop (p) Car

Fig. 3: Object part segmentation predictions of ViPFormer

Feature Distribution The distributions of pretrained and
finetuned features are visualized by t-SNE [62], exhibited
in Fig. 4. The experiments are conducted on ModelNet40
and ScanObjectNN. The pretrained features roughly scatter
into different locations and provide good initialization for
downstream tasks. After finetuning on the target datasets,
the features are clearly separated by different clusters.

(a) PT on MN, 40 categories (b) PT on SO, 15 categories

(c) FT on MN, 40 categories (d) FT on SO, 15 categories

Fig. 4: t-SNE [62] Visualization of pretrained (PT) and
finetuned (FT) features on ModelNet40 (MN) and ScanOb-
jectNN (SO).

V. CONCLUSION

In this paper, We propose an efficient Vision-and-
Pointcloud Transformer to unify image and point cloud
processing in a single architecture. ViPFormer is pretrained
by optimizing intra-modal and cross-modal contrastive objec-
tives. When transferred to downstream tasks and compared
with existing unsupervised methods, ViPFormer shows ad-
vantages in model complexity, runtime latency and perfor-
mances. And the contribution of each component is validated
by extensive ablation studies. In the future, we should
pay more attention to the image branch and explore its
performances on downstream tasks since the current version
focuses on point cloud understanding.
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