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Abstract— This paper presents a parameter-efficient prompt
tuning method, named PPT, to adapt a large multi-modal model
for 3D point cloud understanding. Existing strategies are quite
expensive in computation and storage, and depend on time-
consuming prompt engineering. We address the problems from
three aspects. Firstly, a PromptLearner module is devised to
replace hand-crafted prompts with learnable contexts to auto-
mate the prompt tuning process. Then, we lock the pre-trained
backbone instead of adopting the full fine-tuning paradigm
to substantially improve the parameter efficiency. Finally, a
lightweight PointAdapter module is arranged near target tasks
to enhance prompt tuning for 3D point cloud understanding.
Comprehensive experiments are conducted to demonstrate the
superior parameter and data efficiency of the proposed method.
Meanwhile, we obtain new records on 4 public datasets and
multiple 3D tasks, i.e., point cloud recognition, few-shot learn-
ing, and part segmentation. The implementation is available at
https://github.com/auniquesun/PPT.

I. INTRODUCTION

Point cloud understanding plays a crucial role in real-
world perception since the point cloud data is one of the
most direct forms generated by 3D measuring equipment.
Previously, PointNet [1] and PointNet++ [2] sparked a wave
of directly operating irregular point clouds via deep learning-
based architectures. After rapid progress for years [3]–[15],
the performances of point-based methods gradually approach
a ceiling, partly due to the lack of texture and visual
semantics in point cloud data, which are vital for many
applications, such as 3D object recognition, segmentation
and detection.

Inspired by the great success of large models in language
and image understanding [16]–[25], researchers attempt to
transfer the rich textual and visual knowledge encoded in the
foundation models to boost point cloud understanding [26]–
[30]. Recently, ULIP [31] learns a unified representation for
language, image, and point cloud by contrastive pre-training
on a large-scale triplet dataset derived from ShapeNet [32].
After pre-training, the point cloud encoder has absorbed
textual and visual information, then it is deployed by full
fine-tuning on downstream tasks, such as 3D object clas-
sification and retrieval. Extensive experiments show ULIP
achieves consistent gains over different point cloud architec-
tures (i.e., PointNet++ [2], PointMLP [14], PointBERT [33],
PointNeXt [15]). Therefore, ULIP can be regarded as a large
multi-modal model for 3D understanding.
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Fig. 1: Manual Prompts vs. Learnable Contexts. The former
needs to find proper prompts manually. The latter learns
context vectors adaptively. The accuracy scores are obtained
by running ULIP [31] (PointBERT as 3D encoder).

However, fully fine-tuning the pre-trained ULIP on down-
stream tasks is quite expensive and time-consuming since we
need to update and store a separate copy of all parameters
in the point encoder for each application. It is expected that
there is a parameter-efficient way to leverage the power of
ULIP. Besides, we observe that prompt engineering in ULIP
causes a fluctuation problem: a slight change to the hand-
crafted prompts could have a big impact on performance,
shown in Fig. 1. For example, on the ModelNet40 dataset,
when replacing “a point cloud of a” with “a 3D shape
of a”, the recognition accuracy increases by 5.9%. Instead,
when dropping the word “a” from “a point cloud of a”, the
accuracy decreases by 2.4%. In short, identifying a proper
prompt manually is a non-trivial task. Sometimes, it requires
domain expertise, but the result may be far from an optimal
solution.

To overcome the above problems, in this paper, we present
an efficient and effective prompt tuning solution for 3D point
cloud understanding, which not only improves parameter and
data efficiency greatly but also exhibits better performances
compared to strong baselines. Our solution is built on the
recently released ULIP framework since it attains state
of the art in several 3D tasks. Firstly, a PromptLearner
module is devised to replace the hand-crafted prompts with
learnable contexts. This design allows for finding proper
prompts in vector space adaptively thus automating the
prompt tuning process. Secondly, in contrast to the full



fine-tuning paradigm, we lock the 3D encoder and prevent
the parameters from updating. The strategy considerably
improves parameter efficiency and saves computation and
storage. Thirdly, we introduce a lightweight PointAdapter
to further strengthen the performances of prompt tuning on
downstream point cloud understanding tasks.

To verify the effectiveness of the proposed method, we
conduct various 3D perception tasks, i.e., standard point
cloud recognition, few-shot classification, and 3D object part
segmentation on four public datasets. The datasets vary from
synthetic 3D objects [32], [34] to scanned scenarios in real
world [35]. The results reveal the excellent efficiency and
effectiveness of PPT. In particular, for point cloud recog-
nition, our method reaches 94.1% overall accuracy on the
whole test set of ModelNet40 [34] using only 1.8M learnable
parameters and 30% training data. Note that ULIP achieves
the same performance with 39.1M parameters and 100%
training samples. On the hardest split of ScanObjectNN [35],
the proposed approach gets 89.1% recognition accuracy, a
2.7% absolute improvement over ULIP, but requires only
50% training data. For few-shot classification, our method
demonstrates consistent advantages on two widely used
datasets, especially leading the runner up PointCLIP V2 [27]
by 19% in the 16-shot setting of ScanObjectNN. For 3D
part segmentation, PPT obtains 86.4 mean class IoU, which
is a new record on ShapeNetPart [36] while reducing the
learnable parameters by 60% compared to prior best method.

In summary, the contributions of this paper include
• We identify two critical problems in ULIP: (1) perfor-

mance fluctuation caused by prompt engineering. (2)
expensive storage and poor parameter efficiency caused
by fully fine-tuning the pre-trained 3D encoder.

• We devise PromptLearner and PointAdapter to liberate
prompt engineering, promote parameter and data effi-
ciency, and enhance the effectiveness of point cloud
understanding.

• The proposed method shows stunning performances
across different tasks and datasets for 3D point cloud
understanding, supported by systematic experiments and
ablation studies.

II. RELATED WORK

Our work is related to developing a cheaper and easier-to-
use prompt tuning strategy to adapt a powerful multi-modal
model to enrich point cloud understanding.
Large Multi-Modal Models for 3D Tasks. In recent years,
large multi-modal models have shown incredible capabilities
in text and image understanding [19], [20], [23], [25], [37].
Most of these models emphasize the interaction between
text and image but lack 3D knowledge. A natural idea
is to transfer the knowledge of powerful large models to
promote 3D tasks. PointCLIP [26] successfully achieved
open-vocabulary 3D object recognition via projecting point
clouds into images then exploiting the power of CLIP.
PointCLIP V2 [27] improved the predecessor by generating
more realistic projections and detailed descriptions for 3D
objects. ACT [28] explored the 3D representation learning

assisted with pre-trained image/language models and demon-
strated the benefits. I2P-MAE [38] proposed image-to-point
mask auto-encoders to utilize pre-trained 2D models for 3D
learning.

Note that the above methods leverage powerful multi-
modal models by converting point clouds into images or
building an intermediate representation for 3D data. They
don’t touch the limitation of small scale and poor diversity
of existing 3D datasets, which may deserve more attention.
Recently, another branch of work has taken important steps
toward this direction. The emergence of 3D datasets like
Objavarse [39], OmniObject3D [40] and ScanNeRF [41]
greatly alleviated this limitation. Based on that, ULIP se-
ries [31], [42] quickly created large-scale text, image, point
cloud triplets to learn a unified representation for the three
modalities, then transferred the model to specific 3D tasks.
CLIP2 [30] constructed million-scale triplets for contrastive
pre-training and enhancing the generalization of learned 3D
representations.

Our goal is not to develop another large multi-modal
model for point cloud understanding. Instead, we aim to
substantially optimize the parameter and data efficiency of
existing large models since current ways are expensive in
storage and computation. Thus, this work is orthogonal to
related work.
Prompt Learning for Large Models. The basic idea of
prompt learning is to provide the model with task-related de-
scriptions to elicit the knowledge learned in the pre-training
stage rather than updating parameters in the backbone. This
topic was originally investigated in NLP [43]–[50] to adapt
pre-trained large language models [16], [17] to downstream
tasks. Since it only needs to optimize the text descriptions
in the inputs while keeping the backbone untouched, and
the results are promising in many applications, the strategy
is quickly introduced in tuning vision [51]–[53] and vision-
language models [54]–[57].

However, a point cloud is an irregular structure consisting
of sparse and unordered points, which essentially differs
from text and image data. It is still unclear whether the
parameter-efficient tuning strategy is effective for point cloud
understanding. In this paper, we explore this problem by
designing PromptLearner and PointAdapter modules based
on recently released multi-modal framework ULIP [31], [42],
aiming at making ULIP-based model cheaper and easier for
3D point cloud understanding.

III. METHODOLOGY

In Section III-A, we firstly recap the ULIP framework that
forms the basis of the proposed PPT. Then in Section III-B,
the details of the parameter-efficient prompt tuning method
are elaborated.

A. Revisiting ULIP

One highlight of ULIP is the construction of a large-scale
text, image, and point cloud triplet dataset. For a triplet
Ui = (Ii, Ti, Pi), we denote the image as Ii, text as Ti and
point cloud as Pi. The corresponding encoders for the three
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Fig. 2: The overall architecture of the proposed method. The class name embedding cj can be inserted in any position of
the learnable vectors. Here we insert it in the end for illustration.

modalities are fI(·), fT (·) and fP (·), respectively. Hence,
the extracted features for Ui can be represented as

hI
i = fI(Ii), hT

i = fT (Ti), hP
i = fP (Pi) (1)

Then ULIP learns a unified representation for the three
modalities through unsupervised pre-training. The objective
to be optimized is a contrastive loss, as in Eq. 2.
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∑
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(2)

where M1 and M2 are two different modalities, (i, j) indexes
a positive pair in a batch of training data, and s(·, ·) computes
the cosine similarity of the inputs. Therefore, the total loss
of three modalities can be computed by Eq. 3.

Ltotal = αL(I,T ) + βL(I,P ) + θL(P,T ) (3)

The weights of fI and fT are initialized with the vision-
language model SLIP [58] then frozen. During pre-training,
ULIP only updates the 3D encoder fP . After that, fP that
absorbs 3D, textual, and visual knowledge is transferred to
downstream 3D tasks by full fine-tuning.

B. Parameter-efficient Prompt Tuning for ULIP

Although ULIP refreshed records on multiple down-
stream tasks, including zero-shot point cloud recognition
and standard 3D classification, the prompt engineering and
full fine-tuning hinder it from being exploited easily and
efficiently. We address the shortcomings by designing the
following modules: PromptLearner and PointAdapter. The
overall pipeline of our method is presented in Fig. 2.

1) From Prompt Engineering to PromptLearner: ULIP
generates text descriptions for a 3D point cloud through
hand-crafted templates (i.e., “a point cloud model of
[CLASS]”) then feeds them into the text encoder.

In contrast, we develop PromptLearner to replace manual
prompts with learnable contexts. The basic idea is to provide
the text encoder with rich contexts adaptively rather than
using fixed descriptions, to facilitate the model activating
related knowledge. Specifically, the learnable contexts E
consist of M continuous vectors, formulated in Eq. 4, where
vi ∈ RD, i = 1 . . .M . Note that they have the same form
as the word embeddings of manual prompts.

E = [v]1[v]2 · · · [v]M (4)

For a downstream dataset of S object categories for
recognition, we concatenate the learnable contexts E with the
word embedding of jth category name cj ∈ RD, to generate
the encoding Tj ∈ R(M+1)×D. Then Tj is fed into the text
encoder to produce the text feature hT

j ∈ RD. The procedure
is formulated by Eq. 5 and Eq. 6.

Tj = [E, cj ], j = 1 . . . S (5)

hT
j = fT (Tj), j = 1 . . . S (6)

Hence, the text features are derived from learnable context
vectors instead of fixed word embeddings. The optimization
objective will be explained later.

2) From Full Fine-tuning to PointAdapter: We discard ex-
pensive full fine-tuning and switch to learning a lightweight
PointAdapter, denoted as fPA(·). The module is arranged
after the 3D encoder to enhance the performances of down-
stream 3D tasks.

In the 3D branch, we lock the point patch embedding
module and 3D encoder while ensuring the parameters in
PointAdapter are updatable. A point cloud P ∈ RN×3 is
processed with the embedding and 3D encoder to obtain the
representation hP ∈ RD, where N is the number of points.
Then hP is further processed by our PointAdapter to produce
new representation hPA to adapt specific 3D tasks, as in
Eq. 7.

hPA = fPA(hP ) (7)



Here we implement two versions of PointAdapter (PA),
namely PTB-PA and FFN-PA, to handle the point cloud
understanding tasks of different complexity.
i. PTB-PA is implemented as a Point Transformer [33] block
(PTB), which stacks a multi-head self-attention (MSA) and
a 2-layer MLP, added with the corresponding residual. For
clarity, we denote this PointAdapter variant by Eq. 8.

hPA = fPA(hP ) = PTB(hP ) (8)

ii. FFN-PA is designed as a Feed-Forward network (FFN)
consisting of two Linear layers with GELU activation. It is
equivalent to a residual MLP (ResMLP) submodule in the
Point Transformer block. For simplicity, we use Eq. 9 to
describe it.

hPA = fPA(hP ) = ResMLP(hP ) (9)

Now, we can predict a class distribution for point cloud
P by matching hPA with the text features hT

j , j ∈ 1, . . . , S.
The optimization procedure is introduced below.

3) Optimization: The predicted class distribution for point
cloud P can be defined by Eq. 10 and Eq. 11.

ŷ = [ŷ1, ŷ2, . . . , ŷS ] ∈ RS (10)

ŷj =
exp(s(hPA,hT

j ))∑S
k exp(s(hPA,hT

k ))
, j = 1 . . . S (11)

s(·, ·) is the cosine similarity of the inputs and we exploit
the cross entropy (CE) to compute the loss in Eq. 12.

LCE =
∑
i

−yi log ŷi − (1− yi) log(1− ŷi) (12)

yi is the real distribution of ith point cloud in the training
set. The parameters in PromptLearner and PointAdapter are
initialized with a Gaussian distribution ∼ (0, 0.022), then
updated via gradient back propagation.

IV. EXPERIMENTS

In this section, we conduct systematic experiments to
evaluate the proposed approach on multiple 3D tasks and
justify vital design choices.

A. 3D Point Cloud Recognition

Point cloud recognition is evaluated on two public
datasets, ModelNet40 [34] and ScanObjectNN [35]. Note
ScanObjectNN has three common splits: OBJ ONLY (OBJ),
OBJ BG (BG), and PB T50 RS (PB). The overall accuracy
(OA) and number of learnable parameters (#Params) are
metrics of interest and the results are presented in Tab. I.

Our model has two variants: PPT-FFN and PPT-PTB. The
former represents the model with FFN PointAdapter and the
latter is the model with PTB PointAdapter. We compare
them with representative methods that use supervised or
unsupervised + full fine-tuning strategies.

The results show PPT-FFN is competitive compared to
previous strong baselines. Meanwhile, PPT-PTB not only
attains new state-of-the-art performances on both datasets

but also demonstrate excellent parameter efficiency. For
instance, PPT-PTB achieves the same recognition accuracy
as PointMLP on ModelNet40 while reducing the learnable
parameters by 85.7%. On the three splits of ScanObjectNN,
our PPT-PTB gets 93.1%, 95,4% and 89.1% accuracy, out-
performing previous state-of-the-art ACT by 1.2%, 2.1% and
0.9% and saving 20.3M learnable parameters. Compared
to ULIP, PPT-PTB improves ULIP by 2.7% accuracy on
ScanObjectNN (PB) but uses 95% fewer learnable param-
eters.

TABLE I: Comparison of point cloud recognition on Model-
Net40 and three splits of ScanObjectNN. OBJ: objects only.
BG: objects with background. PB: objects with perturbations.

Method #Params MN40 OBJ BG PB
(M) (%) (%) (%) (%)

supervised training
PointNet [1] 3.5 89.2 79.2 73.3 68.0
PointNet++ [2] 1.5 90.7 84.3 82.3 77.9
PointCNN [3] 0.6 92.2 85.5 86.1 78.5
SpiderCNN [59] – 92.4 79.5 77.1 73.7
DGCNN [4] 1.8 92.9 86.2 82.8 78.1
SimpleView [60] 0.8 93.0 – – 80.5
MVTN [61] 3.5 93.5 92.3 92.6 82.8
PointMLP [14] 12.6 94.1 – – 85.4
PointNeXt [15] 1.4 93.2 – – 87.7

unsupervised pre-training + full fine-tuning
OcCo [62] 3.5 93.0 85.5 84.9 78.8
CrossPoint [63] 27.7 90.3 – 81.7 –
PointBERT [33] 39.1 93.2 88.1 87.4 83.1
MaskPoint [64] 22.1 93.8 89.7 89.3 84.6
PointMAE [65] 22.1 93.8 88.3 90.0 85.2
PointCMT [66] 12.6 93.5 – – 86.4
PointM2AE [67] 12.9 93.4 88.8 91.2 86.4
ACT [28] 22.1 93.7 91.9 93.3 88.2
ULIP(PointBERT) [31] 39.1 94.1 – – 86.4

parameter-efficient prompt tuning
PPT-FFN(PointBERT) 1.2 93.0 92.6 93.3 86.5
PPT-PTB(PointBERT) 1.8 94.1 93.1 95.4 89.1

B. Few-shot Learning

We conduct few-shot point cloud classification on Mod-
elNet40 and ScanObjectNN (PB). Following existing prac-
tices [26], [27], 1, 2, 4, 8, and 16 shots are randomly sampled
from each category for training, but the evaluation takes place
on the whole test set. We adopt PPT-FFN for experiments.
The comparison with related methods is visualized in Fig. 3.
We re-implement PointCLIP V2 [27] since there is no
released code for the few-shot setting. Both PointCLIP [26]
and PointCLIP V2 [27] use ResNet101 [68] as the backbone.

The results demonstrate our model leads the runner up
PointCLIP V2 [27] by a clear margin on both datasets. The
advantages are enlarged with increasing shots and difficulty
of the downstream dataset. Surprisingly, on the hardest split
of ScanObjectNN (PB), PPT-FFN reaches 73.9% accuracy
using 16 shots, surpassing the runner up by 19% abso-
lute points. The experiments validate our parameter-efficient
prompt tuning strategy makes ULIP a better 3D learner under
a low-data regime.



Fig. 3: Comparison of few-shot classification of different
methods on two datasets.

C. 3D Shape Part Segmentation

We conduct 3D shape part segmentation on the ShapeNet-
Part [36] dataset. The major metrics for evaluation include
overall accuracy (OA), mean class-wise intersection over
union (mIoUC), mean instance-wise interaction over union
(mIoUI ) and number of learnable parameters (#Params).

For this task, we append a part segmentation head on the
3D encoder as in [28], [33], [65], [67], [69]. The results
are displayed in Tab. II. Similarly, the proposed model
outperforms the supervised and unsupervised counterparts,
obtaining 86.4% mIoUC and 88.1% mIoUI . Note prior
competitive I2P-MAE [38] is also a multi-modal model,
which converts point clouds into images to absorb off-the-
shelf 2D knowledge [19], [21]. Instead, this work chooses to
adapt the multi-modal ULIP by parameter-efficient prompt
tuning, outreaching I2P-MAE by 1.2% mIoUC and 1.3%
mIoUI with only 29% parameters of it.

TABLE II: Comparison of 3D object part segmentation on
ShapeNetPart.

Method OA mIoUC mIoUI #Params
(%) (%) (%) (M)

supervised training
PointNet [1] – 80.4 83.7 8.5
PointNet++ [2] – 81.9 85.1 6.5
DGCNN [4] – 82.3 85.2 5.6

unsupervised pre-training + full fine-tuning
Transformer – 83.4 85.1 –
CrossPoint [63] 93.8 84.3 – 27.5
PointBERT [33] – 84.1 85.6 44.1
MaskPoint [64] – 84.4 86.0 27.1
PointMAE [65] 94.8 – 86.1 27.1
PointM2AE [67] 94.9 84.9 86.5 25.5
ViPFormer [69] 94.8 84.7 – 26.8
ACT [28] – 84.7 86.1 27.1
I2P-MAE [38] – 85.2 86.8 17.9

parameter-efficient prompt tuning
PPT(PointBERT) 95.0 86.4 88.1 5.2

D. Data Efficiency

Adapting a large model to downstream tasks could poten-
tially decrease the demand for labeled data. We investigate
the data efficiency of the devised prompt tuning strategy
and compare it with the full fine-tuning paradigm adopted
by ULIP. The experiment is conducted on ModelNet40,

(a) data efficiency (b) context length

Fig. 4: In figure (a), the data efficiency between ULIP and
PPT is compared. In figure (b), we ablate the context length
on 4 datasets and the average is displayed in the dashed line.

using different portions (5%, 10%, 15%, 20%, etc.) of data
for training and evaluating on the whole test set. Fig. 4a
exhibits the results. Here PPT-Base indicates our model only
introduces the PromptLearner module, without PointAdapter.
We observe under low-data regime, especially when using
less than 20% of training data, our three PPT variants lead
ULIP (PointBERT) by significant margins. Even training
with 5% data and less than 1.8M learnable parameters,
PPT-Base, PPT-FFN, and PPT-PTB reach 90.7%, 93.2% and
93.1% test accuracy, respectively, versus 39.1M parameters
and 77.5% accuracy of ULIP. The results indicate the de-
veloped parameter-efficient prompt tuning strategy is also
data-efficient.

E. Ablation Studies

We conduct a series of controlled experiments to examine
the design choices of the proposed approach.

TABLE III: Ablation Study: Prompt Engineering vs.
PromptLearner. The prompt engineering combines 64 hand-
crafted templates as in ULIP. “1k pts” means a point cloud
has 1024 points and “8k pts” are 8192 points.

3D Encoder
ULIP ULIP PPT-Base

∆Manual Manual Learnable
(1k pts) (8k pts) (1k pts)

ModelNet40
PointNet++(SSG) [2] 55.6 57.7 89.2 33.6
PointNet++(MSG) [2] 58.4 55.9 88.7 30.3
PointMLP [14] 56.1 60.0 88.6 32.5
PointBERT [33] 71.2 73.3 92.2 21.0

ScanObjectNN
PointNet++(SSG) [2] 30.3 29.3 65.2 34.9
PointNet++(MSG) [2] 29.1 28.4 65.7 36.6
PointMLP [14] 30.3 30.1 63.3 33.0
PointBERT [33] 33.2 37.2 83.6 50.4

1) Prompt Engineering vs. PromptLearner: In this work,
we replace the manual prompts with learnable contexts.
The manual prompts and learnable contexts are generated
by prompt engineering and the PromptLearner module, re-
spectively. The benefits of PromptLearner are verified in
Tab. III. This table compares the recognition accuracy (in
%) under manual and learnable settings. The 2nd and 3rd
columns record the results of zero-shot ULIP and the 4th



column is ours. The last column is the improvement over
ULIP (Manual, 1k pts). Note that the PPT-Base model is
used and the performances are substantially boosted by
deploying the PromptLearner module on the pre-trained
ULIP. In most cases, the improvements are more than 30.0%
absolute points, up to 50.4%. Also, the improvements can
be generalized to different point cloud encoders (Point-
Net++, PointMLP, PointBERT) and datasets (ModelNet40
and ScanObjectNN).

2) Performance Gains brought by PointAdapter: This
experiment examines the performance gains brought by
PointAdapter. The model for comparison is PPT-Base, which
means there is no PointAdapter. Both PPT-FFN and PPT-
PTB arrange the PointAdapter module. The recognition
results in Tab. IV suggest the PPT variants with PointAdapter
clearly improve PPT-Base (see ∆).

TABLE IV: Ablation Study: Gains brought by
PointAdapter. MN: ModelNet40. SO: ScanObjectNN.

Model MN (%) ∆ SO (PB) (%) ∆

PPT-Base(PointBERT) 92.2 – 83.6 –

PPT-FFN(PointBERT) 93.0 0.8 86.5 2.9
PPT-PTB(PointBERT) 94.1 1.9 89.1 5.5

3) The Length of Learnable Contexts: One variable that
should be decided is the length M of the learnable contexts.
Intuitively, longer contexts contain more parameters thus may
provide the model with more informative descriptions for
downstream tasks. We explore this problem by varying the
length and comparing the recognition accuracy. The results
are averaged over 4 datasets, referring to the dashed line in
Fig. 4b. The overall trend is the longer the context, the better
the performance. But it is not always positive to increase
length, i.e., PPT-Base of M = 64 lags behind that of M = 32
in average. Thus we adopt M = 32 by default.

4) Template-based vs. Random Initialization: Here we
investigate different ways to initialize the learnable contexts.
There are two modes: template-based and random. The first
mode initializes the learnable contexts with the embeddings
of a manual template, i.e., “a point cloud model of a”, while
the second one initializes them with random vectors. We
compare the 3D classification accuracy (in %) and the results
are averaged on 4 datasets, including ModelNet40 and three
splits of ScanObjectNN, shown in Tab. V. In fact, there is
no big difference between the two initializations. We adopt
the random mode and middle class position by default.

TABLE V: Ablation Study: Template-based vs. Random
Initialization for the learnable contexts. The 3D encoder in
PPT-Base is PointBERT. Here front/middle/end indicates the
inserted position of a class name.

Model
Template-based Random

“a point cloud model of a” [v1][v2][v3][v4][v5][v6]
front middle end front middle end

PPT-Base 87.11 87.13 83.53 87.11 87.13 83.53

F. Visualization

Learned Contexts. The learned prompts are relatively hard
to understand since they probably cannot be mapped to the
words in a vocabulary. We try to interpret the learned prompts
by finding their nearest words in a vocabulary based on
Euclidean distance. The vocabulary uses BPE encoding [70]
as in CLIP [19]. For clarity, the length of learnable contexts
is set to 6. After optimization on downstream datasets, the
closest word for each learned vector is shown in Tab. VI.
We observe the returned terms are not closely related to
the 3D topics, and cannot form a meaningful sentence for
human beings. Similar observations also occur in another
work [54]. It may be inappropriate to explain the learned
contexts with nearest words. The problem is interesting and
deserves further investigation.

TABLE VI: The nearest word for each of the 6 learned
context vectors. The number below the word is the distance
between the learned context vector and its nearest word
embedding in the vocabulary.

No. 1 2 3 4 5 6

MN [34] bharti etv ihear awaz luhan cnn
1.729 1.676 1.589 1.619 1.605 1.694

SO [35] chatur appear letit matil smack antino
1.484 1.433 1.382 1.444 1.440 1.420

3D Part Segmentation. We visualize the part segmentation
predictions of PPT on ShapeNetPart [36], which contains 16
classes. A single point cloud is randomly selected from each
class for test. The different part predictions are mapped to
different colors for each 3D shape. The results in Fig. 5
indicate our model can segment object parts in various
categories accurately.

Fig. 5: Part segmentation visualization for PPT predictions.

V. CONCLUSION

In this paper, we develop a parameter- and data-efficient
prompt tuning strategy to adapt a large multi-modal model
for 3D point cloud understanding. A PromptLearner module
is proposed to to elicit the rich knowledge encoded in the
large model instead of depending on hand-crafted prompts.
Based on that, we arrange a PointAdapter module near
downstream tasks to further strengthen prompt learning.
During optimization, the pre-trained 3D encoder is frozen
and only parameters in PromptLearner and PointAdapter
are updated. Experiments on various 3D tasks demonstrate
the superior parameter and data efficiency of the proposed
model, accompanied by record-breaking performances.
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