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Map matching is to track the positions of vehicles on the road network based on the 
positions provided by GPS (Global Positioning System) devices. Balancing localization 
accuracy and computation efficiency is a key problem in map matching. Existing methods 
mainly use Hidden Markov Model (HMM) or historical transportation data to learn the 
transitional probabilities among road segments. Although the roads to explore can be 
remarkably reduced by the Markov assumption, miss-of-match and matching breaks may 
occur if the GPS data is highly noisy, and the transitional model needs to be learned offline. 
To address these problems, this paper presents Multiple Candidate Matching (MCM) to 
improve the robustness of map matching. MCM doesn’t need to pre-train the transitional 
model nor the historical transportation information. MCM memorizes multiple historical 
matching candidates in the map matching process. It votes among historical matchings 
and current matchings, but generates limited number of road candidates in real-time to 
restrict the computation complexity. MCM for both online map matching and offline map 
matching are presented and their properties are analyzed theoretically and experimentally. 
Numerical experiments in large-scale data sets show that MCM is very promising in terms 
of accuracy, computational efficiency, and robustness. The matching break and miss-of-
match problems can be resolved effectively when compared with the state-of-the-art map 
matching methods. Codes are outsourced at https://github .com /lindalee -inlab /MCM.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

GPS-based navigation is essential in daily driving, in which, a crucial requirement is to locate car to its correct route for 
generating correct navigation information. Due to the measurement noises of the GPS equipment, GPS reported positions 
might deviate from the real road. The GPS noises may be caused by different reasons, such as when the vehicles are under 
bridges or in tunnels [2] or satellite signals’ multi-path effects [3–5] in built-up city areas.

In order to locate vehicles accurately, researchers proposed to match the trajectory of a vehicle with the known road 
network information. By using the continuity constraint of the vehicle’s motion and the continuity characteristics of the 
roads, the vehicle localization problem becomes to find the most likely road that best matches the GPS trajectory, which 
is called the map matching problem [6]. Map matching can be classified into online map matching [7–11] and offline map 
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Fig. 1. Matching break. The matching break is a common problem in map-matching, which is mainly caused by trajectory outliers. Because of Markov 
assumption, HMM algorithm matches the wrong side road with a higher probability at point p4, but there is no way to correct it, and a break occurs. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

matching [12–18]. The former estimates the current road segment the vehicle is on immediately after a GPS data is collected. 
The latter recovers the traveled roads by offline processing the collected whole GPS trajectory.

Online map matching requires both matching accuracy and efficiency. For efficiency purpose, Markov assumption is 
widely adopted, which assumes the road-matching state at time t depends only on the states at time t − 1, which is not 
related to the states and observations of early times. Based on the Markov assumption, two categories of methods, i.e., 
Hidden Markov Model (HMM) based methods [7–11] and Multiple Hypothesis Techniques (MHT) [19,11,20] are mainly proposed 
in literature for online map matching.

However, in online HMM algorithm, the matching results before time t − 1 are not traced back. One mismatch at t may 
lead to cascaded errors in the later associations, which may cause errors, such as matching break [21] shown in Fig. 1. 
The green trajectory is the estimated trajectory using online HMM method. Because the side road ends at that point, a 
matching break happens. In addition, the HMM-based method needs to train the probability model in advance. The sliding 
window-based method has a certain delay.

To address the above problems of HMM, MHT [19,11,20] generates a variety of road hypotheses at time t through utiliz-
ing historical transportation information to filter the probabilities of choosing the subsequent road. In complex environments 
with large GPS errors, it still leads to subsequent matching errors due to a wrong early matching.

Offline map matching is batching the whole input trajectory to find the optimal matching path in the road network. 
Because the trajectory to road matching is more reliable than the single point matching [22,6,23], it has attracted great 
research attentions. Three kinds of approaches are mainly proposed in the literature: (1) Similarity model-based; (2) Hidden 
Markov Model (HMM)-based, and (3) Multiple Hypothesis Technique (MHT)-based.

Although users care only their current positions, historical data still has great value if historical matching candidates are 
tracked to correct the current matching failures. This paper relaxes the Markov assumption but still designs a highly efficient 
map matching algorithm, i.e., Multiple route Candidate Matching (MCM). MCM is essentially to find the longest common 
sub-sequence between the GPS trajectory and the potential routes generated from the road network. MCM memories the 
possible historical matching candidates and prunes the impossible candidate paths by utilizing road and trajectory continuity 
to restrict computation complexity. So that the matching accuracy and efficiency are balanced. The contributions of MCM 
method is as following:

(1) MCM shows strong fault tolerance. The likelihood of multiple route candidates is tracked by a dynamic programming 
process using a similarity matrix. And a “last” label is used in each row of the similarity matrix to record the historical 
matching point. Even if the matching at t is wrong, because of saving the multiple matching candidates, the matching result 
can be corrected when the correct candidate comes to surface in subsequent matching.

(2) The most unlikely routes are autonomously excluded to control the number of “alive” candidates by continuity con-
straints so that the computation is efficient. In our early work [1], we used directly successive roads as the constraint of 
road continuity. When the GPS sampling frequency is low, the trajectory points may not be on the directly successive roads. 
So in this paper, we use the distance of the shortest path between two roads as the road continuity constraint for pruning. 
The shortest path is the distance along the path between two corresponding road points.

(3) We also trace back the optimal matching results in the offline stage through iteration, which can avoid the HMM 
break problem and effectively improve the matching accuracy.

Experiments on two widely used map matching datasets show that the proposed MCM method provides the highest 
mapping accuracy compared with state-of-the-art online and offline map matching algorithms. The decrease of GPS sam-
pling frequency has little effect on MCM’s matching accuracy than other methods. At the same time, the proposed pruning 
schemes in MCM using trajectory continuity keep the efficiency of MCM. We outsource the codes and provide offline and 
online demos for MCM for potential use by the society at https://github .com /lindalee -inlab /MCM.

2. Related work

Map matching can be divided into two application scenarios: online matching and offline matching. We introduce related 
works from these two aspects.
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Table 1
Online map matching method.

HMM-based method Name Sliding window Observation probabil-
ity

Transition probability Delay time Pre training model

ST matching [7] Fixed size | Speed constraint No delay �
Online HMM [8] Fixed size Speed constraint SVM

(Speed and Distance)
Delay �

Snapnet [9] Fixed size Vehicle heading; road 
level

| No delay �

Route choice HMM 
[10]

Variable size | Distance difference; 
free-flow travel time

Delay �

MHT-based method Name Bayesian filtering 
model

Observation probabil-
ity

Transition probability Delay time Pre training model

MHT [19] EKF | Distance and Speed 
Bayesian probability

No Delay |

2.1. Online map matching

Online map-matching outputs the current road segment the vehicle is on immediately after a GPS data is collected. Two 
categories of methods, i.e., Hidden Markov Model (HMM) based methods and Multiple Hypothesis Techniques (MHT) are mainly 
proposed in literature for online map matching.

(1) HMM-based online methods calculate the hidden Markov chain states in real time. In order to conduct real-time map 
matching by HMM-based method, two methods have been introduced, i.e., the approximate algorithm and the sliding 
window based algorithm.
1) The approximate algorithm greedily calculates the current optimal result [7,9]. These methods use a sliding window 

to calculate the optimization function of a sub-trajectory including future GPS points and output the results in real-
time without delay. The approximation algorithm retains only current optimal path in each step, which can not 
guarantee that the predicted state sequence as a whole is the most likely state sequence.

2) The other method uses the sliding window Viterbi algorithm to calculate the optimal path in a period of time [8,
10,11]. By waiting for some GPS points after time t to fill a window of observations, the matched road at time t is 
evaluated using Viterbi algorithm. The future GPS information will help to improve the matching accuracy at t , but 
the location prediction needs to be delayed.

(2) To avoid pre-train models and delay, an online MHT method [19] is proposed. This method uses Bayesian filtering. The 
goal is to obtain the probability distribution of the state quantity at time t − 1 when the prior probability is known and 
to estimate the posterior probability distribution of the state quantity at time t when the observation and transition 
probability matrix at time t are known. This method avoids delay but needs more historical transportation statistical 
knowledges to generate a route prediction model.

The advantages and disadvantages of various online map matching algorithms are compared, as shown in Table 1.

2.2. Offline map matching

Offline map-matching is performed after the whole trajectory is obtained. It aims for the optimal route matching with 
less constraints on the processing time. In offline map matching, there are mainly three kinds of methods: (1) Similarity 
model based; (2) Hidden Markov Model (HMM)-based; and (3) Multiple Hypothesis Technique (MHT)-based.

(1) The similarity model based methods refer to a category of approaches [24–29] that evaluate the road that is the clos-
est to the GPS trajectory, geometrically and/or topologically. The main focus in this category is how to define the closeness. 
The representative algorithms include Fréchet distance [28] and Longest Common Subsequence (LCSS) [29] distance. Wei et 
al. [28] proposed to use Fréchet distance to measure the matching degree between the GPS sequence and the candidate 
road sequence. Zhu et al. used Longest Common Subsequence (LCSS) [29], which divides a trajectory into multiple segments 
and finds the shortest path on the map for each pair of start and endpoints of a trajectory segment. The shortest paths are 
then concatenated to form the final path while their corresponding LCSS scores are summed. The path whose LCSS score is 
the highest is regarded as the final matching result. The similarity model-based matching algorithms are relatively simple 
and easy to be implemented. But they are still susceptible to GPS noise and data sparsity.

(2) HMM-based methods are the most popular. HMM is a prevailing paradigm of dynamic programming model, which 
well suits the process of finding the most suitable roads (i.e., hidden state) matching with the GPS points (i.e., observed 
state). Newson et al. [12] make predictions for a given point based on the combination of the point’s own position and 
the position of the point which precedes it. This means that topological information and travel distance can both be taken 
into account. The main advantage of using such an approach is to attain a relatively high accuracy whilst requiring much 
less processing time and memory than comparing the whole trajectory. Based on the framework of HMM, most of the 
recent efforts are devoted to improve accuracy by introducing new information such as speed limit ([13,30]), turning angle 
([31]), and curvedness ([15]) or designing more robust and realistic objective functions for path inference ([13], [32], [33]). 
Some methods accelerate the processing time [18]. The HMM-based algorithms greatly improve the matching accuracy than 
similarity model based algorithms. The trajectory can be matched even when GPS points are noisy or in low sampling 
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Table 2
Offline map matching method.

Similarity model-
based method

Name Distance model Pre training model Matching break

Fréchet [28] Fréchet distance | |
LCSS [29] LCSS distance | |

HMM-based 
method

Name Observation probabil-
ity&Transition probability

Pre training model Matching break

Offline HMM [12] |&| � �
Interactive-voting match-
ing [13]

|&Speed constraint � �

Unsupervised HMM [32] Antenna location&Speed 
constraint

� �

Quick matching [30] Speed constraint&| � �
Multistage matching [31] Vehicle heading&

Heading change 
difference

� �

Driver path preference 
based HMM [33]

|&speed constraint; driver’s 
travel preference

� �

MHT-based 
method

Name Bayesian filtering model Pre training model Matching break

BBN [34] Bayesian belief network | �
PT [35] particle filtering model | �

Table 3
NOTATION.

symbol description symbol description

T GPS trajectory pi the ind sample point in trajectory T
xi longitude of the ind sample point yi latitude of the ind sample point
ti timestamp of the ind sample point G Road Network
V vertex set of road network G v vertex of V
E road set of road network G e road of E
e.S start vertex of road e e.E end vertex of road e
e.L polyline of road e R route
R∗ the best matching route of trajectory T S(p, e) node similarity of sample point p and road e
M(T, R) trajectory similarity of route R and trajectory T M(T, G) matching function of road network G and trajectory T

rates. However, the HMM algorithms are sensitive to outliers, which can easily cause “matching breaks”, which means that 
the trajectory is failed to match any road segment at some point. Fig. 1 gives an example of matching break. Matching 
break happens after p4. At the same time, pre-training transitional probabilities among states are generally required in 
HMM-based methods, which requires huge training data and prior training efforts.

(3) The MHT-based method uses Bayesian filtering technology to directly solve the map matching problem through 
sensor fusion and measurement correction. For example, Bayesian belief network (BBN) method [34] uses a Bayesian belief 
network to select the next route candidate in the route list. Particle filter (PF) method [35] uses particle filter model to 
recursively estimate the Probability Density Function (PDF) of the potential position as time and observations advance. 
These methods have good matching results and do not need to train the model in advance, but need to design the best 
Bayesian filtering model.

The above offline map matching algorithms are summarized in Table 2, which introduce more restriction information 
and increase the matching accuracy, but can not meet the real-time performance.

3. Problem model

3.1. Preliminaries

This section defines the map-matching problem and relevant concepts (Table 3):

Definition 1 (Trajectory). A trajectory T is a sequence of chronologically ordered spatial points T : p1 → p2 → ... → pn ob-
tained from GPS sensor. Each point pi consists of a 2-dimensional coordinate 〈xi, yi〉 and a timestamp ti . pi = 〈xi, yi, ti〉

Definition 2 (Road Network). A road network (also known as map) is a directed graph G = (V , E), in which a vertex 
v = (x, y) ∈ V represents an intersection or a road end, and an edge e = (S, E, L) is a directed road starting from ver-
tex S and ending at E with a polyline L representing a sequence of spatial points.

Definition 3 (Route). A route R represents a sequence of connected edges in the road network, i.e. R : e1 → e2 → ... → el , 
where ei ∈ E, i ∈ [1, l − 1] and ei .E = ei+1.S .
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Fig. 2. AB is the segment; P is the point and C is P ’s projection on AB . (a) C is on AB; (b) C is not on AB and is closer to A; (c) C is not on AB and is 
closer to B .

Fig. 3. Trajectory-to-route similarity by trajectory p1, p2, p3, p4 to route e1 → e2 → e3.

Definition 4 (Map Matching). Given a road network G(V , E) and a trajectory T, the map-matching problem finds a route R∗
that best represents the sequence of roads traveled by the trajectory T.

3.2. Point-to-road similarity

There are many ways to define the similarity between a GPS point and a road segment. In our case, we use point-to-line 
distance with a threshold to define the point-to-road similarity. It truncates very low similarity for efficiency.

Definition 5 (Point-to-Road Similarity). The point-to-road similarity S(pi, e j) between a point pi ∈ T and a road e j ∈ G is 
defined by equation (1).

S(pi, e j) =
{

ε − ∥∥pi − e j
∥∥

2, if
∥∥pi − e j

∥∥
2 < ε

0, otherwise
(1)

ε here is a threshold to eliminate the similarity calculation if the point is too far away from the road segment, which is 
helpful to reduce the amount of subsequent calculation. 

∥∥pi − e j
∥∥

2 is the distance from the point pi to the road segment 
e j , which is defined by the shortest distance from the point to the line segment as shown in Fig. 2.

In the point to line distance as shown in Fig. 2, let’s assume the line segment is AB and the point is P . The projection 
from P to AB is denoted by C . If C is on AB , ‖p P −e AB‖2 = ‖P C‖. If C is not on AB and C is closer to A, then ‖p P −e AB‖2 =
‖P A‖; If C is not on AB and C is closer to B , then ‖p P − e AB‖2 = ‖P B‖;

3.3. Trajectory-to-route similarity

We then consider to evaluate the similarity between a GPS trajectory T and a route R on G . Suppose T is composed by a 
set of successively measured GPS points, i.e., T = {p1, p2, · · · , pn}. Suppose R is composed by a set of sequentially connected 
edge segments, i.e., R = {e1, e2, · · · , em}.

Definition 6 (Trajectory-to-route Similarity). Given T ={p1, p2, · · ·, pn} and R = {e1, e2, · · · , em}, the trajectory to route simi-
larity M(T, R) is defined as:

M (T, R) =
n∑

i=1

S (pi, enearest (pi)) (2)

where enearest(pi) is the route on R which has the minimum distance to pi as shown in Fig. 3.

Then, let’s denote R∗ the route on G , which matches best with T. Then the goal of map matching is to find the route 
with the best similarity score with T.
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R∗ = arg max
R

M (T, R) (3)

where R is any route that can be generated from G .

4. Multiple candidate matching

Enumerating all the possible routes on G is computational complexity explosive. MCM generates routes in a controlled 
way. Instead of training the transitional model or using additional road level or travel speed information, MCM uses only 
the trajectory and the roads’ continuity information.

MCM proposes a method by matching the trajectory to the map via generating multiple candidate routes. It tracks the 
matching probabilities of multiple routes and outputs the best matching result. MCM is mainly divided into two steps. 
Firstly, the candidate routes are generated based on the current “alive” matches in the matching table, Q last (storing the 
end edge of the alive routes), and the continuity constraint of the routes on the route graph; Secondly, the trajectory-to-road 
similarities for the multiple route candidates are evaluated using a dynamic programming model. In this step, the matching 
similarities to all potential routes will be evaluated; the best match is output as the current result, and some unlikely routes 
will be pruned for keeping computation efficiency.

MCM proposes an score matrix M to explore the likelihoods of all potential routes that may match with the GPS trajectory. 
The values in the matrix M represent the trajectory-to-road similarities of the candidate routes. The rows of the matrix 
represent the edge segments in the road network, and the columns of the matrix represent the GPS points on the trajectory 
ordered by the collecting time. The map matching process is indeed to update the score matrix M. Because the trajectory 
points are collected in order, at each time t , when a new point pt is obtained, we need to fill a new column, i.e., the tth 
column of M.

The summation of all the point-to-road similarity values of a trajectory sequence is the trajectory-to-route similarity. We 
call each value in the score matrix as trajectory-to-route similarity value. Fig. 4 shows an example of a score matrix where 
n = m = 7. Map matching uses this score matrix. The concepts used in MCM and the steps to fill the score matrix are as 
follows.

4.1. Route candidates and the last alive matching pairs

For finding the route candidates on G that may match with T, we use roads’ continuity information. Based on the 
neighbor edges we got in the previous step, If there is a path that conforms to the road topology in the last matching pairs, 
it indicates that one of the route candidates can be continued.

Definition 7 (Alive Routes, i.e., Route Candidates). Alive routes in M records the potential candidates of routes that may match 
with the trajectory T. Each route candidate is composed by a sequence of connected edges.

Suppose at time t − 1, there are K alive route candidates in M. For each route candidate, we record only the last edge of 
each route to represent the route. This is because when a route’s similarity score is obtained at time t , we can trace back 
the whole route from the last edge of that route in M.

Definition 8 (Last Matching Pair). The last edge on each route is saved as a last matching pair lastk = (e, p), where e is an 
edge index and p is a point index. It means on the kth route, the last matching point p on T matches with the edge e on 
G . It also means that the entry (e, p) in M is the endpoint of the kth alive route.

At the time t , we assume the total number of alive routes is K , and these K alive routes’ last matching pairs are saved 
in a queue data structure Q Last . The following functions are defined to return the edge index and point index in the kth 
route’s last matching pair.

Definition 9 (The last(·) Function). Suppose lk = (e, p) is the last matching pair of the kth alive route, the function e(lk) = e
returns the edge index saved in lk and p(lk) = p returns the point index in lk .

Then route generation considers the route continuity information on map G .

Definition 10 (The near(·) Function). A near() function is designed to restrict MCM to generate only reasonable routes based 
on the road network topology. near(pi, e j) = {e ∈ εr |abs

(∥∥e j − e j+1
∥∥

2 − ‖pi − pi+1‖2

)
< εtopo} where 

∥∥e j − e j+1
∥∥

2 is the 
shortest distance between two edges calculated by Dijkstra algorithm.

We first take the midpoint of the current point pi and the next point pi+1 as the center of the circle, take half the 
distance between the two points plus the error value εr as the radius, and select the road network in the circle as the edges 
involved in the calculation. In this way, many less likely candidate edges can be deleted. The next is to traverse all the edges 
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Fig. 4. The figure shows a score matrix. All the route candidates are shown in the figure. We calculate neighbors for each node (only cells within radius in 
ε in each column). The last alive matching pairs are store in queue Q last and the point-to-road similarity matrix S. The dotted line is the trajectory which 
has maximum score.

within the circle and calculate the shortest distance between them and the edge e j . If the difference between the shortest 
distance and the two points is less than the error threshold εtopo , it is selected as a near edge of (pi, e j).

As shown in Fig. 5, the edges in the dotted circle are involved in the calculation. Suppose the corresponding edge 
of GPS1 is eab , and the corresponding point is pab . According to the position of GPS2, the edges that meet the con-
dition in the circle are near(p1, eab) = {ekl, ekm, emn}. For example, the shortest path between eab and ekm is {|pab− >
pbe|, ebe, eej, e jg, egk, |pk− > pkm|} whose sum length is less than εtopo , so ekm is a near edge of (p1, eab).

4.2. Updating the score matrix

We use the dynamic programming method to calculate the score matrix. At time t , when a new GPS point pt is obtained, 
we check all the alive routes’ last edges, i.e., all the lk ∈ Q Last . M(ei, pt) is filled by one of the following three cases:

(1) For each lk we find near(e(lk)), i.e., all connected edges of the last edge. Then we calculate the similarity scores 
S(ei, pt) for every ei ∈ near(e(lk)). If S(ei, pt) > 0, the score of ei obtained from the kth alive route, denoted by Mk(ei, pt) is 
calculated by:

if S (ei, pt) > 0& ei ∈ near(e (lk)),Mk (ei, pt) = M (e (lk) , p (lk)) + S (ei, pt) (4)

Then all the K alive routes will be processed to calculate (4). The updated score of M(ei , pt), i.e., the score at the ith row 
and tth column in M is filled by the highest score calculated from all the K route candidates.

M (ei, pt) = max
k=1:K

Mk (ei, pt) (5)

(2) If an ei is not in the near edge set of any route’s last edge, but S(ei , pt) > 0, a new route candidate will be generated. 
Its matching score is filled as:
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Fig. 5. The near() function to generate only reasonable routes.

M (ei, pt) = S(ei, pt), if S(ei, pt) > 0&∀lk, ei /∈ near(lk) (6)

(3) If an edge ei has S(ei, pt) = 0, it means the point pt is not likely to be matched with ei , so the matching score at 
M(ei, pt) is filled by copying the highest score of the last column, which means it considers the last best match is still the 
best match.

M (ei, pt) = max
k=1:m

M (ek, pt−1) (7)

The overall equation to fill the matching score at M(ei , pt) is therefore given in

M (ei, pt) =

⎧⎪⎨
⎪⎩

max
k=1:K

{M (e (lk) , p (lk)) + S (ei, pt)} , if S (ei, pt) > 0&ei ∈ near(e(lk))

S(ei, pt), if S(ei, pt) > 0&ei /∈ near(e(lk)),∀lk
max

k=1:m
{M (ek, pt−1)} , otherwise

(8)

So the overall routine in MCM for the score matrix updating is as described below. The pseudocode for MCM is given in 
Algorithm 1.

(1) Initialize score matrix with zero and the last matching pair as empty. (Line 1-2)
(2) Find neighbor roads within radius in ε for the current view of the vehicle. (Line 3-7)
(3) Find the route candidates based on the last matching pairs and the neighboring roads. (Line 10)
(4) Finally, for each route candidate, calculate the similarity score with point-to-road similarity values, and update the 

score matrix and the last matching pairs. (Line 11&14&16)
An example is shown in Fig. 4. After completing the matching at time t2, we get the alive candidate routes as e1 → e1

and e5 → e5, and the two last matching pairs are (e1, p2) and (e5, p2). At time t3, we first find neighbor roads {e2, e5}. 
Then we match the route candidates based on the last matching pairs and the neighboring roads. In the route e1 → e1, 
(e2, p3) satisfies the near(·) function. So we get M(p3, e2) = M(p2, e1) + S(p3, e2) by (8). The other alive routes obtained in 
the same way. At time t3, the last matching pairs Q Last are updated to {(e2, p3), (e5, p3)}. So that the matching at time t3
is finished and the matching scores are filled in the t-th column of M.

At time t6, only one alive route can be found and the last matching pair is updated to be (e5, p5) to (e5, p6). Finally we 
can get the score matrix M which stores the alive candidate routes as shown in Fig. 4.

5. MCM for online map matching

In online map matching, the problem is to find the associated roads for the trajectory up to time t .
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Algorithm 1 Score Matrix updating.
Input: Graph G = {V , E} and trajectory T
Parameter: Threshold ε
Output: Score Matrix M

1: global M = initialize(len(G), len(T))// global variable score matrix.
2: global QLast = initialize(1,len(G))// global variable record last alive matching node.
3: for j = 1 to n do
4: if max

i∈[1,m]
S(i, j) > 0 then

5: M(i, :) = S(i, :); Q last(i) = j;Update near(pi , e j);break;
6: end if
7: end for
8: for j to n do
9: for i = 1 to m do

10: if S(i, j) > 0&&Q last(k) > 0 then
11: M(i, j) = max

k∈[1,m]
{M(k, j − 1) + S(i, j)}; Q last(i) = j; Q last(k) = 0;Update near(pi , e j);

12: else
13: if S(i, j) > 0 then
14: M(i, j) = S(i, j); Q last(i) = j;Update near(pi , e j);// Begin again.
15: else
16: M(i, j) = max

i∈[1,m]
{M(i, j − 1)}; Q last(i) = 0;

17: end if
18: end if
19: end for
20: end for

Algorithm 2 MCM online matching algorithm.
Input: Graph G = {V , E} and trajectory T
Output: matches=Avector containing matching indices

1: Calculate score matrix M by column at time t when S (ei , pt ) > 0.
2: Update Q Last(i) = t .
3: Find out ei that has the highest matching score with pt , i.e., max

i∈[1,m]
M(ei , pt ).

4: matches(t) = ei ;
5: if S (ei , pt ) = 0 then
6: M(i, t) = max

i∈[1,m]
{M(i, t − 1)}; Q last(i) = 0;

7: end if

5.1. Algorithm

Based on the online updating of the matching matrix and the last queue, MCM outputs the candidate matching roads 
with the best matching score up to time t . So in online matching it can efficiently find the maximum M(ei, pt), i ∈ [1, m] at 
time t in case S(ei, pt) > 0. Then it select this path as the matched route. So the overall routine in MCM for online matching 
is as described below. The pseudocode for MCM for online matching is given in Algorithm 2.

(1) For each route candidate, calculate the similarity score with point-to-road similarity values, and update the score 
matrix and the last matching pairs. (Line 1&2)

(2) Then, find the best matching road at t . (Line 3)
(3) Finally, fill the column t of the score matrix and update the last matching pairs. (Line 6)

5.2. Example

For example, as shown in Fig. 6, multiple candidate routes are generated in the online matching process. We fill 
in the matrix M by column during the online matching process. From p1 to p15, there is only one candidate route 
{AB, BC, C D}. At p16, we find the matching pairs are (D E, p16), (C D, p16) and (EG, p16). So there are three candidate 
routes {AB, BC, C D, D E}, {AB, BC, C D} and {EG}. We give out the most likely route {AB, BC, C D, D E} by max

i∈[1,m]
M(ei, p16)

and trace three candidate routes at p17. Finally at p24, when we find the last matching pair is (F H, p24), the most likely 
route can be traced back as {AB, BC, C D, D E, E F , F H}, which has the highest trajectory-to-road similarity following the 
transitions recorded in M.

5.3. Online algorithm feasibility

In the near function, let ε = εr , where ε here is a threshold to eliminate the similarity calculation (as defined in (1)) 
and εr is the error value as the radius given in Definition 10. Then near function can correctly find out all possible edges 
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Fig. 6. The orange path in the figure is the matching result of GPS points. From the figure, we can see that there are two inaccurate matches at p18. But as 
we can seen at p19, we finally match the better edge E F use continuous similarity of trajectories. Finally, we can deduce the path by finding the maximum 
value of M.

involved in the calculation. Traversing and calculating the shortest distance between two sides of the road network requires 
O (mlogm). Therefore, near function reduce the number of calculated edges to reduce the computation complexity. Then we 
prove that at time t , max

i∈[1,m]
M(ei, pt) found by MCM method will output the ground truth route.

Theorem 1 (Effectiveness of MCM online Method). Considering a trajectory T with length t, if the sum matching score between T and 
the ground true route 

∑t
i=1

∥∥pi − ereal,i
∥∥

2 is the largest among all the candidate routes and 
∥∥pi − ereal,i

∥∥ < ε where ereal,i is the 
ground truth edge matching with pi on T, then MCM can correctly output the ground truth route as the optimal route at time t.

Proof of MCM online Method. First of all, when t = 1, if 
∑1

i=1

∥∥pi − ereal,i
∥∥

2 is the largest among all the candidate routes, 
then according to (8), max

i∈[1,m]
M(ei, p1) will output ereal,1 as the best matching route. So the theorem holds for t = 1. We 

suppose the claim holds at time k, i.e., if 
∑k

i=1

∥∥pi − ereal,i
∥∥

2 calculate all the candidate routes and store them. We then 
consider the case at time k + 1. At time k + 1, if 

∑k+1
i=1

∥∥pi − ereal,i
∥∥

2 is the largest among all the candidate routes, it may 
become the largest due to two cases.

(1) 
∑k

i=1

∥∥pi − ereal,i
∥∥

2 is the largest among all the candidate routes, and 
∑k+1

i=1

∥∥pi − ereal,i
∥∥

2 is still the largest 
among all the candidate routes. In this case, since the correct route has been output correctly up to time k, and since 
S(ereal,k+1, pk+1) > 0, ereal,k+1 ∈ near(ereal,k), so M is updated by (4). M(ereal,k+1, pk+1) has the largest score. So the correct 
route is found by MCM at time k + 1.

(2) 
∑k

i=1

∥∥pi − ereal,i
∥∥

2 is not the largest among all the candidate routes, but 
∑k+1

i=1

∥∥pi − ereal,i
∥∥

2 is the largest among 
all the candidate routes. In this case, an incorrect route maybe output at time k. But because S(ereal,k, pk) > 0, the cor-
rect route must be still alive at time k due to (4) and (6). Then since ereal,k+1 ∈ near(ereal,k), M is updated by (4) and 
M(ereal,k+1, pk+1) become the new highest score matching pair. So the optimal route will be backtracked from ereal,k+1.

Finally, we prove that MCM method can complete the matching by saving the alive routes when there are outliers. We 
assume that the point pi−1 matches correctly, and Q last saves this path at this time. If the point pi is an outlier, the 
HMM method will be interrupted because the transition probability matrix is 0. At point pi+1, MCM method can still find 
topological continuous edges of pi−1 to complete matching through the alive route stored in Q last (equivalent to skipping 
pi ). �
6. MCM for offline map matching

Offline map matching is to perform map matching after all the trajectory points have been obtained.
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Fig. 7. There is a break point in matching process. Because of the noise, the matching break at the 53th GPS point. But the two sub-matchings are well, we 
need to find a method to connect the paths.

6.1. Algorithm

After collecting the whole trajectory, MCM method is used to generate the score matrix M. Then the best matching route 
is obtained by back-tracking in M. The offline map matching by MCM can solve the matching break problem which may 
appear in HMM-based methods. When matching breaks happen, because MCM records the matching similarities of multiple 
route candidates, we don’t need to judge the HMM interrupt manually. That is, MCM can automatically resolve the match 
break problem. The method is as follows:

1. Firstly, for the trajectory T and the graph G , the best match route R∗ is calculated according to the alignment matrix 
M. maxi=[1,m] {M (ei, pn)} = M(eend, pend). So we get the best matching of trajectory T as R∗[pbegin,pend] = {ebegin, ..., eend}. 
If the points on the whole trajectory have found matched edges, that is pbegin == p1andpend == pn , the trajectory 
matching is finished. Otherwise, the following recursion process is triggered to automatically find the matched sub-
trajectories when there are matching breaks.

2. Recursive process. For the sub-trajectories that have not found matched routes, we repeat the following four steps for 
not matched sub-trajectories to find matched routes by matrix M as 1)-4).
1). First, we set the matched results in M to 0, that is, Mi∈[1,m], j∈[end,n]

(
ei, p j

) = 0.
2). Then, we segment these trajectories as {p1, ..., pbegin−1}, ..., {pend+1, ..., pn}.
3). Next, find the best matching routes for these sub-trajectories. For these trajectory segments, there are two situations:

(a) The first situation is the last matching trajectory point pend doesn’t equal to pn , that is,
maxi=[1,m]

{
M

(
ei, pbegin−1

)}
has not been calculated. Use maxi=[1,m]

{
M

(
ei, pbegin−1

)} = M(enew
end , pnew

end ), find out 
R∗

[pnew
begin,pnew

end ] = {enew
begin, ..., e

new
end }.

(b) The second situation is the last matching trajectory point pend equals to pn , that is, maxi=[1,m] {M (ei, pend)} has 
been calculated. We use maxi=[1,m] {M (ei, pend)} = M(enew

end , pnew
end ), find out R∗

[pnew
begin,pnew

end ] = {enew
begin, ..., e

new
end }.

4). Finally, we judge whether there are sub-trajectory segments that are not involved in the matching calculation.
3. Stop criterion. The stop criterion is that the whole trajectory is matched.

From the above method, we can see that we divide the trajectory into matched segments according to matrix M. By con-
tinuously iterating section by section to find the optimal matching, the matching break is avoided. The offline algorithm 
obtains the optimal solution.
114



W. Li, Y. Wang, D. Li et al. Theoretical Computer Science 941 (2023) 104–120
6.2. Example

In HMM-based methods, match break appears when the GPS data is highly noisy or is missed in a period, or when the 
map information is incorrect. As an example shown in Fig. 7, when the map information is incorrect in the middle part of 
the route, the GPS trajectories cannot find a matched route, so HMM break happens [21]. When HMM break happens, the 
break needs to be solved by manual judgment to restart the HMM matching process until new matching pair is found.

In MCM for offline matching, we have finished matching from p1 to p53, so we change Mi∈[1,m], j∈[53,80]
(
ei, p j

)
to 0. And 

then, we find out the sub-trajectories which have not been matched as {p54 → p80}. We match the sub-trajectory segment 
p54 → p80 by maxi=[1,m] {M (ei, p80)} and finish matching.

6.3. Offline algorithm feasibility

We need to prove that when there are matching breaks, MCM can find the best matching method of segmented trajec-
tories through iteration, so that the correct matching result can be obtained for the whole trajectory.

Theorem 2 (MCM offline method). Consider there are breakpoints in the middle of the trajectory T. MCM iteration method can find the 
optimal result of all segments for whole trajectory.

Proof of MCM offline method. Suppose the track length is [1, n], and there are two breakpoints a and b in the middle, as 
1 < a < b < n. Now there are three situations.

(1) M[a, b] > M[1, a − 1]&M[b + 1, n], i.e. max
i∈[1,m]

M(i, n) = M[a, b]. After the first [a, b] match, set the value M[a, b] in 

column n to 0, then there must be M[1, a − 1]&M[b + 1, n] > 0, and the match can continue.
(2) M[1, a −1] > M[a, b]&M[b +1, n], i.e. max

i∈[1,m]
M(i, n) = M[1, a −1]. After the first [1, a −1] match, set the value M[1, a −

1] in column n to 0, then there must be M[a, b]&M[b + 1, n] > 0, and the match can continue.
(3) M[b + 1, n] > M[1, a − 1]&M[a, b], i.e. max

i∈[1,m]
M(i, n) = M[b + 1, n]. After the first [b + 1, n] match, set the value M[b +

1, n] in column n to 0, then there must be M[1, a − 1]&M[a, b] > 0, and the match can continue. �
It can be seen that the iteration will not end until the iteration condition is terminated, that is, the matching is not 

completed. It is guaranteed that the optimal result of all segments can be found.

7. Experiment

7.1. Datasets used in evaluation

Two datasets that are widely used in evaluating map matching methods are used in our experiments.

7.1.1. Washington dataset
The Washington Dataset presented by Newson et al. [12], is one of the most widely used benchmark data sets for testing 

map-matching algorithms. It contains GPS data from a drive around Seattle, WA, USA using SiRF Star III GPS chipset with 
WAAS (Wide Area Augmentation System) enabled. The journey was sampled at 1 Hz and contains just over two hours of 
driving in both challenging inner-city environments and the outer suburbs. The total route was 80 km long with 7531 data 
samples containing latitude and longitude pairs. Table 4 shows an overview of this dataset. Further details about this dataset 
can be found in [12].

7.1.2. Global dataset
Tracks featured in the global dataset originate from a publicly available collection called Planet GPX [36]. This dataset 

is part of the OpenStreetMap project [37]. Volunteers worldwide collected it over nine years for automated route shaping 
and turn restriction detection in the OpenStreetMap. The current version of the global dataset contains a selection of 100 
records. This collection has 73 tracks with gaps, 25 tracks with “U”-turns, 24 tracks with loops, 3 tracks with hives, and 20 
records with severe congruence issues. As mentioned above, the track lengths are limited in range from 5 to 100 kilometers. 
All tracks have the same sampling rate of 1 Hz. In total, the dataset contains 247,251 points and 2,695 kilometers of tracks. 
Table 5 shows an overview of this dataset. Further details about this dataset can be found in [38].

8. Results

8.1. Washington dataset results

8.1.1. Parameter selection
Fig. 8(a) shows the relationship between the map matching efficiency and the parameter selection in online matching. 

The point-to-road similarity threshold varies from 5 to 40. The running time increases with ε. Even the maximum running 
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Table 4
Washington Dataset Summary.

Metric Data Value

Total number of journeys 1
Total kilometers of journeys 80
Sampling Rate 1 Hz
Total Samples 7531

Table 5
Global Dataset Summary.

Metric Data Value

Total number of journeys 100
Total kilometers of journeys 2,695
Sampling Rate 1 Hz
Total Samples 247,251

Table 6
Online run-time of our proposed method with Washington dataset when ε = 30.

Average run-time Maximum run-time Minimum run-time
0.0482 s 0.0731 s 0.0057 s

Fig. 8. (a) Efficiency under different ε for Washington dataset. (b) Different ε and different GPS sampling rate v.s. matching accuracy (% of points matched 
to correct road segment) for Washington dataset. (c) MCM vs HMM based method for Washington dataset.

time is far less than 1 second (on a laptop with Intel i7-8550U CPU), so it can well support online map matching, which 
generally takes GPS data at 1 Hz. Fig. 8(b) shows the accuracy of MCM for various sampling intervals and various threshold 
parameters. The horizontal axis represents the similarity threshold, the bar colors represent the sampling intervals, and the 
vertical axis represents the accuracy. Obviously, similarity threshold can help to improve the matching accuracy.

8.1.2. Accuracy comparison with other methods
In this paper, we hope to use road information as little as possible to make the MCM method suitable for different cases. 

So for performance comparison, we choose ST matching [7], Online HMM [8] and MHT [19] as the comparative methods.
Fig. 8(c) illustrates that the matching accuracy is the highest when the sampling rate is 10 Hz. The term ‘accuracy’ in this 

context refers to the percentage of GPS points matched to the correct segment of the road network. When the sampling rate 
decreases, the matching accuracy will decrease because the previous GPS points provide less information about the current 
GPS point. When the sampling rate is too high, unnecessary detour [21] will appear, and the accuracy of matching will also 
be reduced. So we must balance various factors and choose the best matching sampling rate. In the Washington data set, 
10 hz is the best choice, and we choose ε = 30 (Table 6).

From the matching accuracy comparison in Fig. 8(c), we can see that the matching accuracy of MCM is 95%, which 
is better than all other three methods with a high sampling rate. With a low sampling rate, all online methods get less 
accuracy, under 90%. But our MCM method still performs better than the Online-HMM method and ST matching method. 
MHT is most close to MCM, and they are always better than the other two methods (Fig. 9). MCM also uses less information 
than MHT, which is, therefore, highly suitable for online map matching.
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Fig. 9. Result for Washington dataset. Here is an overpass scene, we can see that our method can match the side road well, while other methods will match 
wrong.

Fig. 10. The distribution of data in the global dataset.

8.2. Global dataset results

8.2.1. Dataset features and parameter selection
The distribution of data in the global dataset is shown in Fig. 10. It gives information about the spatial mismatch between 

the GPS points and their real routes. An attribute ‘mad’ is the median absolute deviation, and the attribute ‘max’ is the peak 
distance between the track and the route. In the dataset, the maximum spatial mismatch can be up to 100 meters. In 
order to obtain a consistent estimator of standard deviation, one has to take σ = K ∗ mad where K is a scale parameter 
that depends on the probability distribution function. For normal distribution K ≈ 1.4826, for exponential distribution K ≈
2.0781 and for Rayleigh distribution K ≈ 2.230. These distributions are often used in the literature to characterize spatial 
mismatch.

We can conclude from the previous section that as long as the choice of parameter ε can cover the point-to-road 
errors, the mismatch can be considered by MCM. The larger the parameter ε is selected, the more candidate routes will be 
calculated, and the lower the calculation efficiency is. So we don’t consider the trajectory outliers and just choose the value 
ε = 30 that covers most of the errors.

8.2.2. Solving matching break in offline matching
The matching break is a common problem in map-matching, which is mainly caused by trajectory outliers. This happens 

more frequently in the HMM matching model when the correct state falls out of the candidate range of the outlier. Currently, 
most of the solutions [39] try to overcome this problem by identifying and removing the outliers to remedy the broken 
route. We apply HMM map matching method on the Global dataset with random down-sample and trajectory compression 
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Fig. 11. (a) Matching break by random down-sample and trajectory compression with HMM method and proposed method. (b) Proposed method vs HMM 
based method: GPS sampling rate vs accuracy (% of points matched to correct road segment) for Global dataset.

Fig. 12. Result for U-turns. We seek to map points to the right road, and at the same time, we can map points to the road in the right direction.

(Douglas-Peucker algorithm), respectively. In Fig. 11(a), the result shows that trajectory compression fails to prune outliers 
as this method is the least effective of all methods and has the most number of matching breaks. This is because outliers 
are usually preserved as outstanding points, which means more preprocessing step is required to remove such outliers. 
Compared with trajectory compression, the method of down-sampling the trajectory can sample uniformly and has a certain 
probability of discarding outliers. So the performance is better, but it cannot completely solve the problem of matching 
interruption. However, our method solves the match break problem as shown in Fig. 11(a).

Fig. 11(b) shows the accuracy of the methods for various sampling intervals. The horizontal axis represents the sampling 
interval, and the vertical axis represents accuracy. Fig. 11(b) illustrates the accuracy is the highest when the sampling rate 
is 10 Hz.

In the experiment, we used Newson method [12] as the offline HMM method, which is a major HMM-based method. As 
shown in Fig. 11(b), our MCM method has a 5%-10% better matching effect than the offline HMM method. And even with a 
lower sampling rate, our MCM method has an accuracy above 85%.

8.2.3. Solving map matching problems in complex cases
Our algorithm can also perfectly solve the map matching problem in the following complex cases.

(1) U-turns: the vehicle turned around in the middle of the street. We hope that the vehicle can be matched to the correct 
road (a two-way road that allows U-turns or one-way intersections in the opposite direction). As shown in Fig. 12, our 
algorithm can give the correct matching result for U-turns. The red track represents the true track. The offline HMM 
method represented by the orange track makes a U-turn in the middle of the disconnected one-way street, while our 
method completes the U-turn at the intersection, which is more in line with the actual situation.

(2) hives: a large volume of GPS points packed in a small area. In this case, many noise points are often collected and 
cannot correspond to the road. We hope the noise points can be filtered out and do not correspond to the wrong road. 
As shown in Fig. 13, these noise points are not mismatched in our algorithm. No pre-operation is required; they are 
discarded in the matching process.

(3) loops: the vehicle was traveling in circles. As shown in Fig. 14, in offline HMM, the probability of transition matrix for 
loop road segments is the same, so if a track is equidistant from multiple roads due to noise, it is difficult to complete 
the correct matching. And our algorithm can perfectly solve this problem through global matching.

Table 7 shows the average run-time of the map matching algorithms across both trials. We used an Intel i7-8550U CPU 
@ 1.80 GHz with 16GB of DDR3 RAM to perform the run-time analysis. It can be seen that the proposed approach offers a 
run-time reduction of over 68% using this data set. Furthermore, this has been made possible without creating a large table 
of pre-computed distances, which keeps the memory usage of the algorithm minimal.
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Fig. 13. Result for hives. The noise points are not mismatched.

Fig. 14. Result for loops. MCM method can complete the correct matching in loop situation.

Table 7
Total average run-time of HMM method and our proposed method with Global dataset.

Offline HMM method Proposed method Reduction
171.31 s 54.73 s 68.05%

9. Conclusion and future work

In this paper, we propose a new method, i.e., MCM for online map matching. MCM tracks multiple alive route candi-
dates while controlling the scale of candidates according to the continuity of the road by excluding unnecessary matching 
candidates. In offline matching, in the backtracking process, we use an iterative method to avoid match breaks. Extensive 
evaluations are conducted to verify the effectiveness of MCM. Through the Washington dataset, we verify the feasibility of 
MCM in online map matching. Through the Global data set, we verify the matching accuracy and the influence of sampling 
rate on our method. MCM does not need to offline train the transition probability. It needs to set a threshold to specify the 
maximum acceptable offset. MCM works well without the pain of preliminary data processing work while providing better 
robustness and accuracy. In future work, we can also modify the road continuity function, such as introducing semantic 
information to better distinguish overpass sections, and conduct road navigation while conducting map matching.
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