
Theoretical Computer Science 941 (2023) 104–120
Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

A robust map matching method by considering memorized

multiple matching candidates ✩

Wanting Li, Yongcai Wang ∗, Deying Li, Xiaojia Xu

School of Information, Renmin University of China, Beijing 100872, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 September 2022
Received in revised form 17 October 2022
Accepted 22 October 2022
Available online 18 November 2022

Keywords:
Map matching
Multiple candidate
Road continuity
Online map matching
Offline map matching

Map matching is to track the positions of vehicles on the road network based on the
positions provided by GPS (Global Positioning System) devices. Balancing localization
accuracy and computation efficiency is a key problem in map matching. Existing methods
mainly use Hidden Markov Model (HMM) or historical transportation data to learn the
transitional probabilities among road segments. Although the roads to explore can be
remarkably reduced by the Markov assumption, miss-of-match and matching breaks may
occur if the GPS data is highly noisy, and the transitional model needs to be learned offline.
To address these problems, this paper presents Multiple Candidate Matching (MCM) to
improve the robustness of map matching. MCM doesn’t need to pre-train the transitional
model nor the historical transportation information. MCM memorizes multiple historical
matching candidates in the map matching process. It votes among historical matchings
and current matchings, but generates limited number of road candidates in real-time to
restrict the computation complexity. MCM for both online map matching and offline map
matching are presented and their properties are analyzed theoretically and experimentally.
Numerical experiments in large-scale data sets show that MCM is very promising in terms
of accuracy, computational efficiency, and robustness. The matching break and miss-of-
match problems can be resolved effectively when compared with the state-of-the-art map
matching methods. Codes are outsourced at https://github .com /lindalee -inlab /MCM.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

GPS-based navigation is essential in daily driving, in which, a crucial requirement is to locate car to its correct route for
generating correct navigation information. Due to the measurement noises of the GPS equipment, GPS reported positions
might deviate from the real road. The GPS noises may be caused by different reasons, such as when the vehicles are under
bridges or in tunnels [2] or satellite signals’ multi-path effects [3–5] in built-up city areas.

In order to locate vehicles accurately, researchers proposed to match the trajectory of a vehicle with the known road
network information. By using the continuity constraint of the vehicle’s motion and the continuity characteristics of the
roads, the vehicle localization problem becomes to find the most likely road that best matches the GPS trajectory, which
is called the map matching problem [6]. Map matching can be classified into online map matching [7–11] and offline map

✩ This is an enhanced and extended version of a paper [1] presented at AAIM2022. This work is partially supported by the National Natural Science
Foundation of China Grant No. 12071478, 61972404. Public Computing Cloud, Renmin University of China.

* Corresponding author.
E-mail addresses: lindalee@ruc.edu.cn (W. Li), ycw@ruc.edu.cn (Y. Wang), deyingli@ruc.edu.cn (D. Li), xuxiaojia@ruc.edu.cn (X. Xu).
https://doi.org/10.1016/j.tcs.2022.10.032
0304-3975/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2022.10.032
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2022.10.032&domain=pdf
https://github.com/lindalee-inlab/MCM
mailto:lindalee@ruc.edu.cn
mailto:ycw@ruc.edu.cn
mailto:deyingli@ruc.edu.cn
mailto:xuxiaojia@ruc.edu.cn
https://doi.org/10.1016/j.tcs.2022.10.032

W. Li, Y. Wang, D. Li et al. Theoretical Computer Science 941 (2023) 104–120
Fig. 1. Matching break. The matching break is a common problem in map-matching, which is mainly caused by trajectory outliers. Because of Markov
assumption, HMM algorithm matches the wrong side road with a higher probability at point p4, but there is no way to correct it, and a break occurs. (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

matching [12–18]. The former estimates the current road segment the vehicle is on immediately after a GPS data is collected.
The latter recovers the traveled roads by offline processing the collected whole GPS trajectory.

Online map matching requires both matching accuracy and efficiency. For efficiency purpose, Markov assumption is
widely adopted, which assumes the road-matching state at time t depends only on the states at time t − 1, which is not
related to the states and observations of early times. Based on the Markov assumption, two categories of methods, i.e.,
Hidden Markov Model (HMM) based methods [7–11] and Multiple Hypothesis Techniques (MHT) [19,11,20] are mainly proposed
in literature for online map matching.

However, in online HMM algorithm, the matching results before time t − 1 are not traced back. One mismatch at t may
lead to cascaded errors in the later associations, which may cause errors, such as matching break [21] shown in Fig. 1.
The green trajectory is the estimated trajectory using online HMM method. Because the side road ends at that point, a
matching break happens. In addition, the HMM-based method needs to train the probability model in advance. The sliding
window-based method has a certain delay.

To address the above problems of HMM, MHT [19,11,20] generates a variety of road hypotheses at time t through utiliz-
ing historical transportation information to filter the probabilities of choosing the subsequent road. In complex environments
with large GPS errors, it still leads to subsequent matching errors due to a wrong early matching.

Offline map matching is batching the whole input trajectory to find the optimal matching path in the road network.
Because the trajectory to road matching is more reliable than the single point matching [22,6,23], it has attracted great
research attentions. Three kinds of approaches are mainly proposed in the literature: (1) Similarity model-based; (2) Hidden
Markov Model (HMM)-based, and (3) Multiple Hypothesis Technique (MHT)-based.

Although users care only their current positions, historical data still has great value if historical matching candidates are
tracked to correct the current matching failures. This paper relaxes the Markov assumption but still designs a highly efficient
map matching algorithm, i.e., Multiple route Candidate Matching (MCM). MCM is essentially to find the longest common
sub-sequence between the GPS trajectory and the potential routes generated from the road network. MCM memories the
possible historical matching candidates and prunes the impossible candidate paths by utilizing road and trajectory continuity
to restrict computation complexity. So that the matching accuracy and efficiency are balanced. The contributions of MCM
method is as following:

(1) MCM shows strong fault tolerance. The likelihood of multiple route candidates is tracked by a dynamic programming
process using a similarity matrix. And a “last” label is used in each row of the similarity matrix to record the historical
matching point. Even if the matching at t is wrong, because of saving the multiple matching candidates, the matching result
can be corrected when the correct candidate comes to surface in subsequent matching.

(2) The most unlikely routes are autonomously excluded to control the number of “alive” candidates by continuity con-
straints so that the computation is efficient. In our early work [1], we used directly successive roads as the constraint of
road continuity. When the GPS sampling frequency is low, the trajectory points may not be on the directly successive roads.
So in this paper, we use the distance of the shortest path between two roads as the road continuity constraint for pruning.
The shortest path is the distance along the path between two corresponding road points.

(3) We also trace back the optimal matching results in the offline stage through iteration, which can avoid the HMM
break problem and effectively improve the matching accuracy.

Experiments on two widely used map matching datasets show that the proposed MCM method provides the highest
mapping accuracy compared with state-of-the-art online and offline map matching algorithms. The decrease of GPS sam-
pling frequency has little effect on MCM’s matching accuracy than other methods. At the same time, the proposed pruning
schemes in MCM using trajectory continuity keep the efficiency of MCM. We outsource the codes and provide offline and
online demos for MCM for potential use by the society at https://github .com /lindalee -inlab /MCM.

2. Related work

Map matching can be divided into two application scenarios: online matching and offline matching. We introduce related
works from these two aspects.
105

https://github.com/lindalee-inlab/MCM

W. Li, Y. Wang, D. Li et al. Theoretical Computer Science 941 (2023) 104–120
Table 1
Online map matching method.

HMM-based method Name Sliding window Observation probabil-
ity

Transition probability Delay time Pre training model

ST matching [7] Fixed size | Speed constraint No delay �
Online HMM [8] Fixed size Speed constraint SVM

(Speed and Distance)
Delay �

Snapnet [9] Fixed size Vehicle heading; road
level

| No delay �

Route choice HMM
[10]

Variable size | Distance difference;
free-flow travel time

Delay �

MHT-based method Name Bayesian filtering
model

Observation probabil-
ity

Transition probability Delay time Pre training model

MHT [19] EKF | Distance and Speed
Bayesian probability

No Delay |

2.1. Online map matching

Online map-matching outputs the current road segment the vehicle is on immediately after a GPS data is collected. Two
categories of methods, i.e., Hidden Markov Model (HMM) based methods and Multiple Hypothesis Techniques (MHT) are mainly
proposed in literature for online map matching.

(1) HMM-based online methods calculate the hidden Markov chain states in real time. In order to conduct real-time map
matching by HMM-based method, two methods have been introduced, i.e., the approximate algorithm and the sliding
window based algorithm.
1) The approximate algorithm greedily calculates the current optimal result [7,9]. These methods use a sliding window

to calculate the optimization function of a sub-trajectory including future GPS points and output the results in real-
time without delay. The approximation algorithm retains only current optimal path in each step, which can not
guarantee that the predicted state sequence as a whole is the most likely state sequence.

2) The other method uses the sliding window Viterbi algorithm to calculate the optimal path in a period of time [8,
10,11]. By waiting for some GPS points after time t to fill a window of observations, the matched road at time t is
evaluated using Viterbi algorithm. The future GPS information will help to improve the matching accuracy at t , but
the location prediction needs to be delayed.

(2) To avoid pre-train models and delay, an online MHT method [19] is proposed. This method uses Bayesian filtering. The
goal is to obtain the probability distribution of the state quantity at time t − 1 when the prior probability is known and
to estimate the posterior probability distribution of the state quantity at time t when the observation and transition
probability matrix at time t are known. This method avoids delay but needs more historical transportation statistical
knowledges to generate a route prediction model.

The advantages and disadvantages of various online map matching algorithms are compared, as shown in Table 1.

2.2. Offline map matching

Offline map-matching is performed after the whole trajectory is obtained. It aims for the optimal route matching with
less constraints on the processing time. In offline map matching, there are mainly three kinds of methods: (1) Similarity
model based; (2) Hidden Markov Model (HMM)-based; and (3) Multiple Hypothesis Technique (MHT)-based.

(1) The similarity model based methods refer to a category of approaches [24–29] that evaluate the road that is the clos-
est to the GPS trajectory, geometrically and/or topologically. The main focus in this category is how to define the closeness.
The representative algorithms include Fréchet distance [28] and Longest Common Subsequence (LCSS) [29] distance. Wei et
al. [28] proposed to use Fréchet distance to measure the matching degree between the GPS sequence and the candidate
road sequence. Zhu et al. used Longest Common Subsequence (LCSS) [29], which divides a trajectory into multiple segments
and finds the shortest path on the map for each pair of start and endpoints of a trajectory segment. The shortest paths are
then concatenated to form the final path while their corresponding LCSS scores are summed. The path whose LCSS score is
the highest is regarded as the final matching result. The similarity model-based matching algorithms are relatively simple
and easy to be implemented. But they are still susceptible to GPS noise and data sparsity.

(2) HMM-based methods are the most popular. HMM is a prevailing paradigm of dynamic programming model, which
well suits the process of finding the most suitable roads (i.e., hidden state) matching with the GPS points (i.e., observed
state). Newson et al. [12] make predictions for a given point based on the combination of the point’s own position and
the position of the point which precedes it. This means that topological information and travel distance can both be taken
into account. The main advantage of using such an approach is to attain a relatively high accuracy whilst requiring much
less processing time and memory than comparing the whole trajectory. Based on the framework of HMM, most of the
recent efforts are devoted to improve accuracy by introducing new information such as speed limit ([13,30]), turning angle
([31]), and curvedness ([15]) or designing more robust and realistic objective functions for path inference ([13], [32], [33]).
Some methods accelerate the processing time [18]. The HMM-based algorithms greatly improve the matching accuracy than
similarity model based algorithms. The trajectory can be matched even when GPS points are noisy or in low sampling
106

W. Li, Y. Wang, D. Li et al. Theoretical Computer Science 941 (2023) 104–120
Table 2
Offline map matching method.

Similarity model-
based method

Name Distance model Pre training model Matching break

Fréchet [28] Fréchet distance | |
LCSS [29] LCSS distance | |

HMM-based
method

Name Observation probabil-
ity&Transition probability

Pre training model Matching break

Offline HMM [12] |&| � �
Interactive-voting match-
ing [13]

|&Speed constraint � �

Unsupervised HMM [32] Antenna location&Speed
constraint

� �

Quick matching [30] Speed constraint&| � �
Multistage matching [31] Vehicle heading&

Heading change
difference

� �

Driver path preference
based HMM [33]

|&speed constraint; driver’s
travel preference

� �

MHT-based
method

Name Bayesian filtering model Pre training model Matching break

BBN [34] Bayesian belief network | �
PT [35] particle filtering model | �

Table 3
NOTATION.

symbol description symbol description

T GPS trajectory pi the ind sample point in trajectory T
xi longitude of the ind sample point yi latitude of the ind sample point
ti timestamp of the ind sample point G Road Network
V vertex set of road network G v vertex of V
E road set of road network G e road of E
e.S start vertex of road e e.E end vertex of road e
e.L polyline of road e R route
R∗ the best matching route of trajectory T S(p, e) node similarity of sample point p and road e
M(T, R) trajectory similarity of route R and trajectory T M(T, G) matching function of road network G and trajectory T

rates. However, the HMM algorithms are sensitive to outliers, which can easily cause “matching breaks”, which means that
the trajectory is failed to match any road segment at some point. Fig. 1 gives an example of matching break. Matching
break happens after p4. At the same time, pre-training transitional probabilities among states are generally required in
HMM-based methods, which requires huge training data and prior training efforts.

(3) The MHT-based method uses Bayesian filtering technology to directly solve the map matching problem through
sensor fusion and measurement correction. For example, Bayesian belief network (BBN) method [34] uses a Bayesian belief
network to select the next route candidate in the route list. Particle filter (PF) method [35] uses particle filter model to
recursively estimate the Probability Density Function (PDF) of the potential position as time and observations advance.
These methods have good matching results and do not need to train the model in advance, but need to design the best
Bayesian filtering model.

The above offline map matching algorithms are summarized in Table 2, which introduce more restriction information
and increase the matching accuracy, but can not meet the real-time performance.

3. Problem model

3.1. Preliminaries

This section defines the map-matching problem and relevant concepts (Table 3):

Definition 1 (Trajectory). A trajectory T is a sequence of chronologically ordered spatial points T : p1 → p2 → ... → pn ob-
tained from GPS sensor. Each point pi consists of a 2-dimensional coordinate 〈xi, yi〉 and a timestamp ti . pi = 〈xi, yi, ti〉

Definition 2 (Road Network). A road network (also known as map) is a directed graph G = (V , E), in which a vertex
v = (x, y) ∈ V represents an intersection or a road end, and an edge e = (S, E, L) is a directed road starting from ver-
tex S and ending at E with a polyline L representing a sequence of spatial points.

Definition 3 (Route). A route R represents a sequence of connected edges in the road network, i.e. R : e1 → e2 → ... → el ,
where ei ∈ E, i ∈ [1, l − 1] and ei .E = ei+1.S .
107

W. Li, Y. Wang, D. Li et al. Theoretical Computer Science 941 (2023) 104–120
Fig. 2. AB is the segment; P is the point and C is P ’s projection on AB . (a) C is on AB; (b) C is not on AB and is closer to A; (c) C is not on AB and is
closer to B .

Fig. 3. Trajectory-to-route similarity by trajectory p1, p2, p3, p4 to route e1 → e2 → e3.

Definition 4 (Map Matching). Given a road network G(V , E) and a trajectory T, the map-matching problem finds a route R∗
that best represents the sequence of roads traveled by the trajectory T.

3.2. Point-to-road similarity

There are many ways to define the similarity between a GPS point and a road segment. In our case, we use point-to-line
distance with a threshold to define the point-to-road similarity. It truncates very low similarity for efficiency.

Definition 5 (Point-to-Road Similarity). The point-to-road similarity S(pi, e j) between a point pi ∈ T and a road e j ∈ G is
defined by equation (1).

S(pi, e j) =
{

ε − ∥∥pi − e j
∥∥

2, if
∥∥pi − e j

∥∥
2 < ε

0, otherwise
(1)

ε here is a threshold to eliminate the similarity calculation if the point is too far away from the road segment, which is
helpful to reduce the amount of subsequent calculation.

∥∥pi − e j
∥∥

2 is the distance from the point pi to the road segment
e j , which is defined by the shortest distance from the point to the line segment as shown in Fig. 2.

In the point to line distance as shown in Fig. 2, let’s assume the line segment is AB and the point is P . The projection
from P to AB is denoted by C . If C is on AB , ‖p P −e AB‖2 = ‖P C‖. If C is not on AB and C is closer to A, then ‖p P −e AB‖2 =
‖P A‖; If C is not on AB and C is closer to B , then ‖p P − e AB‖2 = ‖P B‖;

3.3. Trajectory-to-route similarity

We then consider to evaluate the similarity between a GPS trajectory T and a route R on G . Suppose T is composed by a
set of successively measured GPS points, i.e., T = {p1, p2, · · · , pn}. Suppose R is composed by a set of sequentially connected
edge segments, i.e., R = {e1, e2, · · · , em}.

Definition 6 (Trajectory-to-route Similarity). Given T ={p1, p2, · · ·, pn} and R = {e1, e2, · · · , em}, the trajectory to route simi-
larity M(T, R) is defined as:

M (T, R) =
n∑

i=1

S (pi, enearest (pi)) (2)

where enearest(pi) is the route on R which has the minimum distance to pi as shown in Fig. 3.

Then, let’s denote R∗ the route on G , which matches best with T. Then the goal of map matching is to find the route
with the best similarity score with T.
108

W. Li, Y. Wang, D. Li et al. Theoretical Computer Science 941 (2023) 104–120
R∗ = arg max
R

M (T, R) (3)

where R is any route that can be generated from G .

4. Multiple candidate matching

Enumerating all the possible routes on G is computational complexity explosive. MCM generates routes in a controlled
way. Instead of training the transitional model or using additional road level or travel speed information, MCM uses only
the trajectory and the roads’ continuity information.

MCM proposes a method by matching the trajectory to the map via generating multiple candidate routes. It tracks the
matching probabilities of multiple routes and outputs the best matching result. MCM is mainly divided into two steps.
Firstly, the candidate routes are generated based on the current “alive” matches in the matching table, Q last (storing the
end edge of the alive routes), and the continuity constraint of the routes on the route graph; Secondly, the trajectory-to-road
similarities for the multiple route candidates are evaluated using a dynamic programming model. In this step, the matching
similarities to all potential routes will be evaluated; the best match is output as the current result, and some unlikely routes
will be pruned for keeping computation efficiency.

MCM proposes an score matrix M to explore the likelihoods of all potential routes that may match with the GPS trajectory.
The values in the matrix M represent the trajectory-to-road similarities of the candidate routes. The rows of the matrix
represent the edge segments in the road network, and the columns of the matrix represent the GPS points on the trajectory
ordered by the collecting time. The map matching process is indeed to update the score matrix M. Because the trajectory
points are collected in order, at each time t , when a new point pt is obtained, we need to fill a new column, i.e., the tth
column of M.

The summation of all the point-to-road similarity values of a trajectory sequence is the trajectory-to-route similarity. We
call each value in the score matrix as trajectory-to-route similarity value. Fig. 4 shows an example of a score matrix where
n = m = 7. Map matching uses this score matrix. The concepts used in MCM and the steps to fill the score matrix are as
follows.

4.1. Route candidates and the last alive matching pairs

For finding the route candidates on G that may match with T, we use roads’ continuity information. Based on the
neighbor edges we got in the previous step, If there is a path that conforms to the road topology in the last matching pairs,
it indicates that one of the route candidates can be continued.

Definition 7 (Alive Routes, i.e., Route Candidates). Alive routes in M records the potential candidates of routes that may match
with the trajectory T. Each route candidate is composed by a sequence of connected edges.

Suppose at time t − 1, there are K alive route candidates in M. For each route candidate, we record only the last edge of
each route to represent the route. This is because when a route’s similarity score is obtained at time t , we can trace back
the whole route from the last edge of that route in M.

Definition 8 (Last Matching Pair). The last edge on each route is saved as a last matching pair lastk = (e, p), where e is an
edge index and p is a point index. It means on the kth route, the last matching point p on T matches with the edge e on
G . It also means that the entry (e, p) in M is the endpoint of the kth alive route.

At the time t , we assume the total number of alive routes is K , and these K alive routes’ last matching pairs are saved
in a queue data structure Q Last . The following functions are defined to return the edge index and point index in the kth
route’s last matching pair.

Definition 9 (The last(·) Function). Suppose lk = (e, p) is the last matching pair of the kth alive route, the function e(lk) = e
returns the edge index saved in lk and p(lk) = p returns the point index in lk .

Then route generation considers the route continuity information on map G .

Definition 10 (The near(·) Function). A near() function is designed to restrict MCM to generate only reasonable routes based
on the road network topology. near(pi, e j) = {e ∈ εr |abs

(∥∥e j − e j+1
∥∥

2 − ‖pi − pi+1‖2

)
< εtopo} where

∥∥e j − e j+1
∥∥

2 is the
shortest distance between two edges calculated by Dijkstra algorithm.

We first take the midpoint of the current point pi and the next point pi+1 as the center of the circle, take half the
distance between the two points plus the error value εr as the radius, and select the road network in the circle as the edges
involved in the calculation. In this way, many less likely candidate edges can be deleted. The next is to traverse all the edges
109

W. Li, Y. Wang, D. Li et al. Theoretical Computer Science 941 (2023) 104–120
Fig. 4. The figure shows a score matrix. All the route candidates are shown in the figure. We calculate neighbors for each node (only cells within radius in
ε in each column). The last alive matching pairs are store in queue Q last and the point-to-road similarity matrix S. The dotted line is the trajectory which
has maximum score.

within the circle and calculate the shortest distance between them and the edge e j . If the difference between the shortest
distance and the two points is less than the error threshold εtopo , it is selected as a near edge of (pi, e j).

As shown in Fig. 5, the edges in the dotted circle are involved in the calculation. Suppose the corresponding edge
of GPS1 is eab , and the corresponding point is pab . According to the position of GPS2, the edges that meet the con-
dition in the circle are near(p1, eab) = {ekl, ekm, emn}. For example, the shortest path between eab and ekm is {|pab− >
pbe|, ebe, eej, e jg, egk, |pk− > pkm|} whose sum length is less than εtopo , so ekm is a near edge of (p1, eab).

4.2. Updating the score matrix

We use the dynamic programming method to calculate the score matrix. At time t , when a new GPS point pt is obtained,
we check all the alive routes’ last edges, i.e., all the lk ∈ Q Last . M(ei, pt) is filled by one of the following three cases:

(1) For each lk we find near(e(lk)), i.e., all connected edges of the last edge. Then we calculate the similarity scores
S(ei, pt) for every ei ∈ near(e(lk)). If S(ei, pt) > 0, the score of ei obtained from the kth alive route, denoted by Mk(ei, pt) is
calculated by:

if S (ei, pt) > 0& ei ∈ near(e (lk)),Mk (ei, pt) = M (e (lk) , p (lk)) + S (ei, pt) (4)

Then all the K alive routes will be processed to calculate (4). The updated score of M(ei , pt), i.e., the score at the ith row
and tth column in M is filled by the highest score calculated from all the K route candidates.

M (ei, pt) = max
k=1:K

Mk (ei, pt) (5)

(2) If an ei is not in the near edge set of any route’s last edge, but S(ei , pt) > 0, a new route candidate will be generated.
Its matching score is filled as:
110

W. Li, Y. Wang, D. Li et al. Theoretical Computer Science 941 (2023) 104–120
Fig. 5. The near() function to generate only reasonable routes.

M (ei, pt) = S(ei, pt), if S(ei, pt) > 0&∀lk, ei /∈ near(lk) (6)

(3) If an edge ei has S(ei, pt) = 0, it means the point pt is not likely to be matched with ei , so the matching score at
M(ei, pt) is filled by copying the highest score of the last column, which means it considers the last best match is still the
best match.

M (ei, pt) = max
k=1:m

M (ek, pt−1) (7)

The overall equation to fill the matching score at M(ei , pt) is therefore given in

M (ei, pt) =

⎧⎪⎨
⎪⎩

max
k=1:K

{M (e (lk) , p (lk)) + S (ei, pt)} , if S (ei, pt) > 0&ei ∈ near(e(lk))

S(ei, pt), if S(ei, pt) > 0&ei /∈ near(e(lk)),∀lk
max

k=1:m
{M (ek, pt−1)} , otherwise

(8)

So the overall routine in MCM for the score matrix updating is as described below. The pseudocode for MCM is given in
Algorithm 1.

(1) Initialize score matrix with zero and the last matching pair as empty. (Line 1-2)
(2) Find neighbor roads within radius in ε for the current view of the vehicle. (Line 3-7)
(3) Find the route candidates based on the last matching pairs and the neighboring roads. (Line 10)
(4) Finally, for each route candidate, calculate the similarity score with point-to-road similarity values, and update the

score matrix and the last matching pairs. (Line 11&14&16)
An example is shown in Fig. 4. After completing the matching at time t2, we get the alive candidate routes as e1 → e1

and e5 → e5, and the two last matching pairs are (e1, p2) and (e5, p2). At time t3, we first find neighbor roads {e2, e5}.
Then we match the route candidates based on the last matching pairs and the neighboring roads. In the route e1 → e1,
(e2, p3) satisfies the near(·) function. So we get M(p3, e2) = M(p2, e1) + S(p3, e2) by (8). The other alive routes obtained in
the same way. At time t3, the last matching pairs Q Last are updated to {(e2, p3), (e5, p3)}. So that the matching at time t3
is finished and the matching scores are filled in the t-th column of M.

At time t6, only one alive route can be found and the last matching pair is updated to be (e5, p5) to (e5, p6). Finally we
can get the score matrix M which stores the alive candidate routes as shown in Fig. 4.

5. MCM for online map matching

In online map matching, the problem is to find the associated roads for the trajectory up to time t .
111

W. Li, Y. Wang, D. Li et al. Theoretical Computer Science 941 (2023) 104–120
Algorithm 1 Score Matrix updating.
Input: Graph G = {V , E} and trajectory T
Parameter: Threshold ε
Output: Score Matrix M

1: global M = initialize(len(G), len(T))// global variable score matrix.
2: global QLast = initialize(1,len(G))// global variable record last alive matching node.
3: for j = 1 to n do
4: if max

i∈[1,m]
S(i, j) > 0 then

5: M(i, :) = S(i, :); Q last(i) = j;Update near(pi , e j);break;
6: end if
7: end for
8: for j to n do
9: for i = 1 to m do

10: if S(i, j) > 0&&Q last(k) > 0 then
11: M(i, j) = max

k∈[1,m]
{M(k, j − 1) + S(i, j)}; Q last(i) = j; Q last(k) = 0;Update near(pi , e j);

12: else
13: if S(i, j) > 0 then
14: M(i, j) = S(i, j); Q last(i) = j;Update near(pi , e j);// Begin again.
15: else
16: M(i, j) = max

i∈[1,m]
{M(i, j − 1)}; Q last(i) = 0;

17: end if
18: end if
19: end for
20: end for

Algorithm 2 MCM online matching algorithm.
Input: Graph G = {V , E} and trajectory T
Output: matches=Avector containing matching indices

1: Calculate score matrix M by column at time t when S (ei , pt) > 0.
2: Update Q Last(i) = t .
3: Find out ei that has the highest matching score with pt , i.e., max

i∈[1,m]
M(ei , pt).

4: matches(t) = ei ;
5: if S (ei , pt) = 0 then
6: M(i, t) = max

i∈[1,m]
{M(i, t − 1)}; Q last(i) = 0;

7: end if

5.1. Algorithm

Based on the online updating of the matching matrix and the last queue, MCM outputs the candidate matching roads
with the best matching score up to time t . So in online matching it can efficiently find the maximum M(ei, pt), i ∈ [1, m] at
time t in case S(ei, pt) > 0. Then it select this path as the matched route. So the overall routine in MCM for online matching
is as described below. The pseudocode for MCM for online matching is given in Algorithm 2.

(1) For each route candidate, calculate the similarity score with point-to-road similarity values, and update the score
matrix and the last matching pairs. (Line 1&2)

(2) Then, find the best matching road at t . (Line 3)
(3) Finally, fill the column t of the score matrix and update the last matching pairs. (Line 6)

5.2. Example

For example, as shown in Fig. 6, multiple candidate routes are generated in the online matching process. We fill
in the matrix M by column during the online matching process. From p1 to p15, there is only one candidate route
{AB, BC, C D}. At p16, we find the matching pairs are (D E, p16), (C D, p16) and (EG, p16). So there are three candidate
routes {AB, BC, C D, D E}, {AB, BC, C D} and {EG}. We give out the most likely route {AB, BC, C D, D E} by max

i∈[1,m]
M(ei, p16)

and trace three candidate routes at p17. Finally at p24, when we find the last matching pair is (F H, p24), the most likely
route can be traced back as {AB, BC, C D, D E, E F , F H}, which has the highest trajectory-to-road similarity following the
transitions recorded in M.

5.3. Online algorithm feasibility

In the near function, let ε = εr , where ε here is a threshold to eliminate the similarity calculation (as defined in (1))
and εr is the error value as the radius given in Definition 10. Then near function can correctly find out all possible edges
112

W. Li, Y. Wang, D. Li et al. Theoretical Computer Science 941 (2023) 104–120
Fig. 6. The orange path in the figure is the matching result of GPS points. From the figure, we can see that there are two inaccurate matches at p18. But as
we can seen at p19, we finally match the better edge E F use continuous similarity of trajectories. Finally, we can deduce the path by finding the maximum
value of M.

involved in the calculation. Traversing and calculating the shortest distance between two sides of the road network requires
O (mlogm). Therefore, near function reduce the number of calculated edges to reduce the computation complexity. Then we
prove that at time t , max

i∈[1,m]
M(ei, pt) found by MCM method will output the ground truth route.

Theorem 1 (Effectiveness of MCM online Method). Considering a trajectory T with length t, if the sum matching score between T and
the ground true route

∑t
i=1

∥∥pi − ereal,i
∥∥

2 is the largest among all the candidate routes and
∥∥pi − ereal,i

∥∥ < ε where ereal,i is the
ground truth edge matching with pi on T, then MCM can correctly output the ground truth route as the optimal route at time t.

Proof of MCM online Method. First of all, when t = 1, if
∑1

i=1

∥∥pi − ereal,i
∥∥

2 is the largest among all the candidate routes,
then according to (8), max

i∈[1,m]
M(ei, p1) will output ereal,1 as the best matching route. So the theorem holds for t = 1. We

suppose the claim holds at time k, i.e., if
∑k

i=1

∥∥pi − ereal,i
∥∥

2 calculate all the candidate routes and store them. We then
consider the case at time k + 1. At time k + 1, if

∑k+1
i=1

∥∥pi − ereal,i
∥∥

2 is the largest among all the candidate routes, it may
become the largest due to two cases.

(1)
∑k

i=1

∥∥pi − ereal,i
∥∥

2 is the largest among all the candidate routes, and
∑k+1

i=1

∥∥pi − ereal,i
∥∥

2 is still the largest
among all the candidate routes. In this case, since the correct route has been output correctly up to time k, and since
S(ereal,k+1, pk+1) > 0, ereal,k+1 ∈ near(ereal,k), so M is updated by (4). M(ereal,k+1, pk+1) has the largest score. So the correct
route is found by MCM at time k + 1.

(2)
∑k

i=1

∥∥pi − ereal,i
∥∥

2 is not the largest among all the candidate routes, but
∑k+1

i=1

∥∥pi − ereal,i
∥∥

2 is the largest among
all the candidate routes. In this case, an incorrect route maybe output at time k. But because S(ereal,k, pk) > 0, the cor-
rect route must be still alive at time k due to (4) and (6). Then since ereal,k+1 ∈ near(ereal,k), M is updated by (4) and
M(ereal,k+1, pk+1) become the new highest score matching pair. So the optimal route will be backtracked from ereal,k+1.

Finally, we prove that MCM method can complete the matching by saving the alive routes when there are outliers. We
assume that the point pi−1 matches correctly, and Q last saves this path at this time. If the point pi is an outlier, the
HMM method will be interrupted because the transition probability matrix is 0. At point pi+1, MCM method can still find
topological continuous edges of pi−1 to complete matching through the alive route stored in Q last (equivalent to skipping
pi). �
6. MCM for offline map matching

Offline map matching is to perform map matching after all the trajectory points have been obtained.
113

W. Li, Y. Wang, D. Li et al. Theoretical Computer Science 941 (2023) 104–120
Fig. 7. There is a break point in matching process. Because of the noise, the matching break at the 53th GPS point. But the two sub-matchings are well, we
need to find a method to connect the paths.

6.1. Algorithm

After collecting the whole trajectory, MCM method is used to generate the score matrix M. Then the best matching route
is obtained by back-tracking in M. The offline map matching by MCM can solve the matching break problem which may
appear in HMM-based methods. When matching breaks happen, because MCM records the matching similarities of multiple
route candidates, we don’t need to judge the HMM interrupt manually. That is, MCM can automatically resolve the match
break problem. The method is as follows:

1. Firstly, for the trajectory T and the graph G , the best match route R∗ is calculated according to the alignment matrix
M. maxi=[1,m] {M (ei, pn)} = M(eend, pend). So we get the best matching of trajectory T as R∗[pbegin,pend] = {ebegin, ..., eend}.
If the points on the whole trajectory have found matched edges, that is pbegin == p1andpend == pn , the trajectory
matching is finished. Otherwise, the following recursion process is triggered to automatically find the matched sub-
trajectories when there are matching breaks.

2. Recursive process. For the sub-trajectories that have not found matched routes, we repeat the following four steps for
not matched sub-trajectories to find matched routes by matrix M as 1)-4).
1). First, we set the matched results in M to 0, that is, Mi∈[1,m], j∈[end,n]

(
ei, p j

) = 0.
2). Then, we segment these trajectories as {p1, ..., pbegin−1}, ..., {pend+1, ..., pn}.
3). Next, find the best matching routes for these sub-trajectories. For these trajectory segments, there are two situations:

(a) The first situation is the last matching trajectory point pend doesn’t equal to pn , that is,
maxi=[1,m]

{
M

(
ei, pbegin−1

)}
has not been calculated. Use maxi=[1,m]

{
M

(
ei, pbegin−1

)} = M(enew
end , pnew

end), find out
R∗

[pnew
begin,pnew

end] = {enew
begin, ..., e

new
end }.

(b) The second situation is the last matching trajectory point pend equals to pn , that is, maxi=[1,m] {M (ei, pend)} has
been calculated. We use maxi=[1,m] {M (ei, pend)} = M(enew

end , pnew
end), find out R∗

[pnew
begin,pnew

end] = {enew
begin, ..., e

new
end }.

4). Finally, we judge whether there are sub-trajectory segments that are not involved in the matching calculation.
3. Stop criterion. The stop criterion is that the whole trajectory is matched.

From the above method, we can see that we divide the trajectory into matched segments according to matrix M. By con-
tinuously iterating section by section to find the optimal matching, the matching break is avoided. The offline algorithm
obtains the optimal solution.
114

W. Li, Y. Wang, D. Li et al. Theoretical Computer Science 941 (2023) 104–120
6.2. Example

In HMM-based methods, match break appears when the GPS data is highly noisy or is missed in a period, or when the
map information is incorrect. As an example shown in Fig. 7, when the map information is incorrect in the middle part of
the route, the GPS trajectories cannot find a matched route, so HMM break happens [21]. When HMM break happens, the
break needs to be solved by manual judgment to restart the HMM matching process until new matching pair is found.

In MCM for offline matching, we have finished matching from p1 to p53, so we change Mi∈[1,m], j∈[53,80]
(
ei, p j

)
to 0. And

then, we find out the sub-trajectories which have not been matched as {p54 → p80}. We match the sub-trajectory segment
p54 → p80 by maxi=[1,m] {M (ei, p80)} and finish matching.

6.3. Offline algorithm feasibility

We need to prove that when there are matching breaks, MCM can find the best matching method of segmented trajec-
tories through iteration, so that the correct matching result can be obtained for the whole trajectory.

Theorem 2 (MCM offline method). Consider there are breakpoints in the middle of the trajectory T. MCM iteration method can find the
optimal result of all segments for whole trajectory.

Proof of MCM offline method. Suppose the track length is [1, n], and there are two breakpoints a and b in the middle, as
1 < a < b < n. Now there are three situations.

(1) M[a, b] > M[1, a − 1]&M[b + 1, n], i.e. max
i∈[1,m]

M(i, n) = M[a, b]. After the first [a, b] match, set the value M[a, b] in

column n to 0, then there must be M[1, a − 1]&M[b + 1, n] > 0, and the match can continue.
(2) M[1, a −1] > M[a, b]&M[b +1, n], i.e. max

i∈[1,m]
M(i, n) = M[1, a −1]. After the first [1, a −1] match, set the value M[1, a −

1] in column n to 0, then there must be M[a, b]&M[b + 1, n] > 0, and the match can continue.
(3) M[b + 1, n] > M[1, a − 1]&M[a, b], i.e. max

i∈[1,m]
M(i, n) = M[b + 1, n]. After the first [b + 1, n] match, set the value M[b +

1, n] in column n to 0, then there must be M[1, a − 1]&M[a, b] > 0, and the match can continue. �
It can be seen that the iteration will not end until the iteration condition is terminated, that is, the matching is not

completed. It is guaranteed that the optimal result of all segments can be found.

7. Experiment

7.1. Datasets used in evaluation

Two datasets that are widely used in evaluating map matching methods are used in our experiments.

7.1.1. Washington dataset
The Washington Dataset presented by Newson et al. [12], is one of the most widely used benchmark data sets for testing

map-matching algorithms. It contains GPS data from a drive around Seattle, WA, USA using SiRF Star III GPS chipset with
WAAS (Wide Area Augmentation System) enabled. The journey was sampled at 1 Hz and contains just over two hours of
driving in both challenging inner-city environments and the outer suburbs. The total route was 80 km long with 7531 data
samples containing latitude and longitude pairs. Table 4 shows an overview of this dataset. Further details about this dataset
can be found in [12].

7.1.2. Global dataset
Tracks featured in the global dataset originate from a publicly available collection called Planet GPX [36]. This dataset

is part of the OpenStreetMap project [37]. Volunteers worldwide collected it over nine years for automated route shaping
and turn restriction detection in the OpenStreetMap. The current version of the global dataset contains a selection of 100
records. This collection has 73 tracks with gaps, 25 tracks with “U”-turns, 24 tracks with loops, 3 tracks with hives, and 20
records with severe congruence issues. As mentioned above, the track lengths are limited in range from 5 to 100 kilometers.
All tracks have the same sampling rate of 1 Hz. In total, the dataset contains 247,251 points and 2,695 kilometers of tracks.
Table 5 shows an overview of this dataset. Further details about this dataset can be found in [38].

8. Results

8.1. Washington dataset results

8.1.1. Parameter selection
Fig. 8(a) shows the relationship between the map matching efficiency and the parameter selection in online matching.

The point-to-road similarity threshold varies from 5 to 40. The running time increases with ε. Even the maximum running
115

W. Li, Y. Wang, D. Li et al. Theoretical Computer Science 941 (2023) 104–120
Table 4
Washington Dataset Summary.

Metric Data Value

Total number of journeys 1
Total kilometers of journeys 80
Sampling Rate 1 Hz
Total Samples 7531

Table 5
Global Dataset Summary.

Metric Data Value

Total number of journeys 100
Total kilometers of journeys 2,695
Sampling Rate 1 Hz
Total Samples 247,251

Table 6
Online run-time of our proposed method with Washington dataset when ε = 30.

Average run-time Maximum run-time Minimum run-time
0.0482 s 0.0731 s 0.0057 s

Fig. 8. (a) Efficiency under different ε for Washington dataset. (b) Different ε and different GPS sampling rate v.s. matching accuracy (% of points matched
to correct road segment) for Washington dataset. (c) MCM vs HMM based method for Washington dataset.

time is far less than 1 second (on a laptop with Intel i7-8550U CPU), so it can well support online map matching, which
generally takes GPS data at 1 Hz. Fig. 8(b) shows the accuracy of MCM for various sampling intervals and various threshold
parameters. The horizontal axis represents the similarity threshold, the bar colors represent the sampling intervals, and the
vertical axis represents the accuracy. Obviously, similarity threshold can help to improve the matching accuracy.

8.1.2. Accuracy comparison with other methods
In this paper, we hope to use road information as little as possible to make the MCM method suitable for different cases.

So for performance comparison, we choose ST matching [7], Online HMM [8] and MHT [19] as the comparative methods.
Fig. 8(c) illustrates that the matching accuracy is the highest when the sampling rate is 10 Hz. The term ‘accuracy’ in this

context refers to the percentage of GPS points matched to the correct segment of the road network. When the sampling rate
decreases, the matching accuracy will decrease because the previous GPS points provide less information about the current
GPS point. When the sampling rate is too high, unnecessary detour [21] will appear, and the accuracy of matching will also
be reduced. So we must balance various factors and choose the best matching sampling rate. In the Washington data set,
10 hz is the best choice, and we choose ε = 30 (Table 6).

From the matching accuracy comparison in Fig. 8(c), we can see that the matching accuracy of MCM is 95%, which
is better than all other three methods with a high sampling rate. With a low sampling rate, all online methods get less
accuracy, under 90%. But our MCM method still performs better than the Online-HMM method and ST matching method.
MHT is most close to MCM, and they are always better than the other two methods (Fig. 9). MCM also uses less information
than MHT, which is, therefore, highly suitable for online map matching.
116

W. Li, Y. Wang, D. Li et al. Theoretical Computer Science 941 (2023) 104–120
Fig. 9. Result for Washington dataset. Here is an overpass scene, we can see that our method can match the side road well, while other methods will match
wrong.

Fig. 10. The distribution of data in the global dataset.

8.2. Global dataset results

8.2.1. Dataset features and parameter selection
The distribution of data in the global dataset is shown in Fig. 10. It gives information about the spatial mismatch between

the GPS points and their real routes. An attribute ‘mad’ is the median absolute deviation, and the attribute ‘max’ is the peak
distance between the track and the route. In the dataset, the maximum spatial mismatch can be up to 100 meters. In
order to obtain a consistent estimator of standard deviation, one has to take σ = K ∗ mad where K is a scale parameter
that depends on the probability distribution function. For normal distribution K ≈ 1.4826, for exponential distribution K ≈
2.0781 and for Rayleigh distribution K ≈ 2.230. These distributions are often used in the literature to characterize spatial
mismatch.

We can conclude from the previous section that as long as the choice of parameter ε can cover the point-to-road
errors, the mismatch can be considered by MCM. The larger the parameter ε is selected, the more candidate routes will be
calculated, and the lower the calculation efficiency is. So we don’t consider the trajectory outliers and just choose the value
ε = 30 that covers most of the errors.

8.2.2. Solving matching break in offline matching
The matching break is a common problem in map-matching, which is mainly caused by trajectory outliers. This happens

more frequently in the HMM matching model when the correct state falls out of the candidate range of the outlier. Currently,
most of the solutions [39] try to overcome this problem by identifying and removing the outliers to remedy the broken
route. We apply HMM map matching method on the Global dataset with random down-sample and trajectory compression
117

W. Li, Y. Wang, D. Li et al. Theoretical Computer Science 941 (2023) 104–120
Fig. 11. (a) Matching break by random down-sample and trajectory compression with HMM method and proposed method. (b) Proposed method vs HMM
based method: GPS sampling rate vs accuracy (% of points matched to correct road segment) for Global dataset.

Fig. 12. Result for U-turns. We seek to map points to the right road, and at the same time, we can map points to the road in the right direction.

(Douglas-Peucker algorithm), respectively. In Fig. 11(a), the result shows that trajectory compression fails to prune outliers
as this method is the least effective of all methods and has the most number of matching breaks. This is because outliers
are usually preserved as outstanding points, which means more preprocessing step is required to remove such outliers.
Compared with trajectory compression, the method of down-sampling the trajectory can sample uniformly and has a certain
probability of discarding outliers. So the performance is better, but it cannot completely solve the problem of matching
interruption. However, our method solves the match break problem as shown in Fig. 11(a).

Fig. 11(b) shows the accuracy of the methods for various sampling intervals. The horizontal axis represents the sampling
interval, and the vertical axis represents accuracy. Fig. 11(b) illustrates the accuracy is the highest when the sampling rate
is 10 Hz.

In the experiment, we used Newson method [12] as the offline HMM method, which is a major HMM-based method. As
shown in Fig. 11(b), our MCM method has a 5%-10% better matching effect than the offline HMM method. And even with a
lower sampling rate, our MCM method has an accuracy above 85%.

8.2.3. Solving map matching problems in complex cases
Our algorithm can also perfectly solve the map matching problem in the following complex cases.

(1) U-turns: the vehicle turned around in the middle of the street. We hope that the vehicle can be matched to the correct
road (a two-way road that allows U-turns or one-way intersections in the opposite direction). As shown in Fig. 12, our
algorithm can give the correct matching result for U-turns. The red track represents the true track. The offline HMM
method represented by the orange track makes a U-turn in the middle of the disconnected one-way street, while our
method completes the U-turn at the intersection, which is more in line with the actual situation.

(2) hives: a large volume of GPS points packed in a small area. In this case, many noise points are often collected and
cannot correspond to the road. We hope the noise points can be filtered out and do not correspond to the wrong road.
As shown in Fig. 13, these noise points are not mismatched in our algorithm. No pre-operation is required; they are
discarded in the matching process.

(3) loops: the vehicle was traveling in circles. As shown in Fig. 14, in offline HMM, the probability of transition matrix for
loop road segments is the same, so if a track is equidistant from multiple roads due to noise, it is difficult to complete
the correct matching. And our algorithm can perfectly solve this problem through global matching.

Table 7 shows the average run-time of the map matching algorithms across both trials. We used an Intel i7-8550U CPU
@ 1.80 GHz with 16GB of DDR3 RAM to perform the run-time analysis. It can be seen that the proposed approach offers a
run-time reduction of over 68% using this data set. Furthermore, this has been made possible without creating a large table
of pre-computed distances, which keeps the memory usage of the algorithm minimal.
118

W. Li, Y. Wang, D. Li et al. Theoretical Computer Science 941 (2023) 104–120
Fig. 13. Result for hives. The noise points are not mismatched.

Fig. 14. Result for loops. MCM method can complete the correct matching in loop situation.

Table 7
Total average run-time of HMM method and our proposed method with Global dataset.

Offline HMM method Proposed method Reduction
171.31 s 54.73 s 68.05%

9. Conclusion and future work

In this paper, we propose a new method, i.e., MCM for online map matching. MCM tracks multiple alive route candi-
dates while controlling the scale of candidates according to the continuity of the road by excluding unnecessary matching
candidates. In offline matching, in the backtracking process, we use an iterative method to avoid match breaks. Extensive
evaluations are conducted to verify the effectiveness of MCM. Through the Washington dataset, we verify the feasibility of
MCM in online map matching. Through the Global data set, we verify the matching accuracy and the influence of sampling
rate on our method. MCM does not need to offline train the transition probability. It needs to set a threshold to specify the
maximum acceptable offset. MCM works well without the pain of preliminary data processing work while providing better
robustness and accuracy. In future work, we can also modify the road continuity function, such as introducing semantic
information to better distinguish overpass sections, and conduct road navigation while conducting map matching.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential com-
peting interests: Yongcai Wang reports financial support was provided by National Natural Science Foundation of China,
61972404, 12071478.

References

[1] D.L.X.X. Li Wanting, Yongcai Wang, Mcm: a robust map matching method by tracking multiple road candidates, in: Algorithmic Aspects in Information
and Management, Springer, 2022.

[2] Y. Cui, S.S. Ge, Autonomous vehicle positioning with gps in urban canyon environments, IEEE Trans. Robot. Autom. 19 (2003) 15–25.
[3] R. Chaggara, C. Macabiau, E. Chatre, Using gps multicorrelator receivers for multipath parameters estimation, in: Proceedings of the 15th International

Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2002), 2002, pp. 477–492.
[4] M. Spangenberg, A. Giremus, P. Poire, J.-Y. Tourneret, Multipath Estimation in the Global Positioning System for Multicorrelator Receivers, 2007 IEEE

International Conference on Acoustics, Speech and Signal Processing-ICASSP’07, vol. 3, IEEE, 2007, pp. III–1277.
[5] N. Blanco-Delgado, F.D. Nunes, Multipath estimation in multicorrelator gnss receivers using the maximum likelihood principle, IEEE Trans. Aerosp.

Electron. Syst. 48 (2012) 3222–3233.
[6] D. Bernstein, A. Kornhauser, et al., An Introduction to Map Matching for Personal Navigation Assistants, 1996.
119

http://refhub.elsevier.com/S0304-3975(22)00638-7/bibCD2C0B6E33ED5A9AF593EC43060A3EF8s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibCD2C0B6E33ED5A9AF593EC43060A3EF8s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib2B1DB3F6E0C5EB7DD1EF65652DC0E351s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibF857778E2342669EB1798A99360CF136s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibF857778E2342669EB1798A99360CF136s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib0AEB88312964E9949FD9B584D89EBD24s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib0AEB88312964E9949FD9B584D89EBD24s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibCE6F9ECCE74AE50424E7CF2B4B2B6223s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibCE6F9ECCE74AE50424E7CF2B4B2B6223s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibF249045C1618199AE2CDF8DCDC322F43s1

W. Li, Y. Wang, D. Li et al. Theoretical Computer Science 941 (2023) 104–120
[7] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, Y. Huang, Map-matching for low-sampling-rate gps trajectories, in: Proceedings of the 17th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, 2009, pp. 352–361.

[8] C.Y. Goh, J. Dauwels, N. Mitrovic, M.T. Asif, A. Oran, P. Jaillet, Online map-matching based on hidden markov model for real-time traffic sensing
applications, in: 2012 15th International IEEE Conference on Intelligent Transportation Systems, IEEE, 2012, pp. 776–781.

[9] R. Mohamed, H. Aly, M. Youssef, Accurate real-time map matching for challenging environments, IEEE Trans. Intell. Transp. Syst. 18 (2016) 847–857.
[10] G.R. Jagadeesh, T. Srikanthan, Online map-matching of noisy and sparse location data with hidden markov and route choice models, IEEE Trans. Intell.

Transp. Syst. 18 (2017) 2423–2434.
[11] L. Luo, X. Hou, W. Cai, B. Guo, Incremental route inference from low-sampling gps data: an opportunistic approach to online map matching, Inf. Sci.

512 (2020) 1407–1423.
[12] P. Newson, J. Krumm, Hidden markov map matching through noise and sparseness, in: Proceedings of the 17th ACM SIGSPATIAL International Confer-

ence on Advances in Geographic Information Systems, 2009, pp. 336–343.
[13] J. Yuan, Y. Zheng, C. Zhang, X. Xie, G.-Z. Sun, An interactive-voting based map matching algorithm, in: 2010 Eleventh International Conference on

Mobile Data Management, IEEE, 2010, pp. 43–52.
[14] Y. Li, Q. Huang, M. Kerber, L. Zhang, L. Guibas, Large-scale joint map matching of gps traces, in: Proceedings of the 21st ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems, 2013, pp. 214–223.
[15] Z. Zeng, T. Zhang, Q. Li, Z. Wu, H. Zou, C. Gao, Curvedness feature constrained map matching for low-frequency probe vehicle data, Int. J. Geogr. Inf.

Sci. 30 (2016) 660–690.
[16] H. Wei, Y. Wang, G. Forman, Y. Zhu, H. Guan, Fast viterbi map matching with tunable weight functions, in: Proceedings of the 20th International

Conference on Advances in Geographic Information Systems, 2012, pp. 613–616.
[17] B.Y. Chen, H. Yuan, Q. Li, W.H. Lam, S.-L. Shaw, K. Yan, Map-matching algorithm for large-scale low-frequency floating car data, Int. J. Geogr. Inf. Sci. 28

(2014) 22–38.
[18] M. Dogramadzi, A. Khan, Accelerated map matching for gps trajectories, IEEE Trans. Intell. Transp. Syst. (2021).
[19] S. Taguchi, S. Koide, T. Yoshimura, Online map matching with route prediction, IEEE Trans. Intell. Transp. Syst. 20 (2018) 338–347.
[20] G. Li, L. Lou, P. Zheng, et al., Route restoration method for sparse taxi gps trajectory based on bayesian network, Teh. Vjesn. - Stroj. Fak. 28 (2021)

668–677.
[21] P. Chao, Y. Xu, W. Hua, X. Zhou, A survey on map-matching algorithms, in: Australasian Database Conference, Springer, 2020, pp. 121–133.
[22] J.L. Bentley, H.A. Maurer, Efficient worst-case data structures for range searching, Acta Inform. 13 (1980) 155–168.
[23] C.E. White, D. Bernstein, A.L. Kornhauser, Some map matching algorithms for personal navigation assistants, Transp. Res., Part C, Emerg. Technol. 8

(2000) 91–108.
[24] S.S. Saab, A map matching approach for train positioning. i. Development and analysis, IEEE Trans. Veh. Technol. 49 (2000) 467–475.
[25] G. Taylor, G. Blewitt, D. Steup, S. Corbett, A. Car, Road reduction filtering for gps-gis navigation, Trans. GIS 5 (2001) 193–207.
[26] S. Brakatsoulas, D. Pfoser, R. Salas, C. Wenk, On map-matching vehicle tracking data, in: Proceedings of the 31st International Conference on Very Large

Data Bases, 2005, pp. 853–864.
[27] H. Yin, O. Wolfson, A weight-based map matching method in moving objects databases, in: Proceedings. 16th International Conference on Scientific

and Statistical Database Management, 2004, IEEE, 2004, pp. 437–438.
[28] H. Wei, Y. Wang, G. Forman, Y. Zhu, Map matching by fréchet distance and global weight optimization, Technical Paper, Department of Computer

Science and Engineering, 2013, p. 19.
[29] L. Zhu, J.R. Holden, J.D. Gonder, Trajectory segmentation map-matching approach for large-scale, high-resolution gps data, Transp. Res. Rec. 2645 (2017)

67–75.
[30] R. Song, W. Lu, W. Sun, Y. Huang, C. Chen, Quick map matching using multi-core cpus, in: Proceedings of the 20th International Conference on Advances

in Geographic Information Systems, 2012, pp. 605–608.
[31] M.M. Atia, A.R. Hilal, C. Stellings, E. Hartwell, J. Toonstra, W.B. Miners, O.A. Basir, A low-cost lane-determination system using gnss/imu fusion and

hmm-based multistage map matching, IEEE Trans. Intell. Transp. Syst. 18 (2017) 3027–3037.
[32] L. Bonnetain, A. Furno, J. Krug, N.-E.E. Faouzi, Can we map-match individual cellular network signaling trajectories in urban environments? data-driven

study, Transp. Res. Rec. 2673 (2019) 74–88.
[33] C. Song, X. Yan, N. Stephen, A.A. Khan, Hidden markov model and driver path preference for floating car trajectory map matching, IET Intell. Transp.

Syst. 12 (2018) 1433–1441.
[34] T. Feng, H.J. Timmermans, Map matching of gps data with bayesian belief networks, J. East. Asia Soc. Transport. Stud. 10 (2013) 100–112.
[35] X. Wang, W. Ni, An improved particle filter and its application to an ins/gps integrated navigation system in a serious noisy scenario, Meas. Sci. Technol.

27 (2016) 095005.
[36] P.G. contributors, Planet gpx, http://planet .openstreetmap .org /gps/, 2009.
[37] O. contributors, Openstreetmap, http://openstreetmap .org/, 2009.
[38] M. Kubička, A. Cela, P. Moulin, H. Mounier, S.-I. Niculescu, Dataset for testing and training of map-matching algorithms, in: 2015 IEEE Intelligent

Vehicles Symposium (IV), IEEE, 2015, pp. 1088–1093.
[39] H. Wu, W. Sun, B. Zheng, Is only one gps position sufficient to locate you to the road network accurately?, in: Proceedings of the 2016 ACM Interna-

tional Joint Conference on Pervasive and Ubiquitous Computing, 2016, pp. 740–751.
120

http://refhub.elsevier.com/S0304-3975(22)00638-7/bib18186BCC30AF7D8CBCFB304449673B0As1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib18186BCC30AF7D8CBCFB304449673B0As1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib588FC679F5F3C8D89EF853DC388DA77Es1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib588FC679F5F3C8D89EF853DC388DA77Es1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibF892AE11BD6BB90AD8AB10E8546294CAs1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib1E955897AAC89F4BA3E1FF9F573CAA6Cs1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib1E955897AAC89F4BA3E1FF9F573CAA6Cs1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib5F2058DA1A358760310E9C330748F323s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib5F2058DA1A358760310E9C330748F323s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibC56D7389E09279B637E9ED6581D5B951s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibC56D7389E09279B637E9ED6581D5B951s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib021BDADB563764B761CA4486291452C0s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib021BDADB563764B761CA4486291452C0s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib48942E251AD360AB028475C3972B06F2s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib48942E251AD360AB028475C3972B06F2s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib8A8A7B6B3320CD4B92A0D4518CE1E1C0s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib8A8A7B6B3320CD4B92A0D4518CE1E1C0s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib782CF4F375DD004FCE0675471E637A0Cs1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib782CF4F375DD004FCE0675471E637A0Cs1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib7A4CF5EA392931597D294CFB0B3FCD84s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib7A4CF5EA392931597D294CFB0B3FCD84s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib27D275FB20F36DECDE3583519CC69B05s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib7C1A476461CCCF285414A7F758F89964s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibF2863682C23141CAE89702C17D7FB007s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibF2863682C23141CAE89702C17D7FB007s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib697FA1C6FB3A4815A115305533E757B0s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibBFCAEDD15B912A0E482F5BE323E013EAs1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibA9B4D5D2C5CC6D241453EC9DF5D99C89s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibA9B4D5D2C5CC6D241453EC9DF5D99C89s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibE621D854CFBF7E2A0659BADF31BD3EDBs1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib41098BF0CB543222DDBE9D5454638334s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib869FBE71C014D7F6C0C07B16A1CA89BCs1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib869FBE71C014D7F6C0C07B16A1CA89BCs1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibFF306DAA6F43A0BA5D43ABB9BAD3A5C3s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibFF306DAA6F43A0BA5D43ABB9BAD3A5C3s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib79A44CB0CC34B4F2A110CE3623BE3487s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib79A44CB0CC34B4F2A110CE3623BE3487s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib06B639B27A983B7050A6AD1A193134DEs1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib06B639B27A983B7050A6AD1A193134DEs1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibBD8515CF07463EAB70A94BCBEA6E6997s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibBD8515CF07463EAB70A94BCBEA6E6997s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib8E31CC6086A5E15B9A0F6C60103C6407s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib8E31CC6086A5E15B9A0F6C60103C6407s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibB053CC5215D51EF7387FAECA662BB8B4s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibB053CC5215D51EF7387FAECA662BB8B4s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibFE9E2F1319CF6FFBCF5CEE2BEC4E5FC2s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibFE9E2F1319CF6FFBCF5CEE2BEC4E5FC2s1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bibDE08D1B144B9BEA9374CFE95B1DF5EFCs1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib44D62F3BB427387806C2253ACEADC0FDs1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib44D62F3BB427387806C2253ACEADC0FDs1
http://planet.openstreetmap.org/gps/
http://openstreetmap.org/
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib227B72F4CC782583120302F44B1DFFECs1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib227B72F4CC782583120302F44B1DFFECs1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib0E79ACCF270FFE71757B8B59F36C77DFs1
http://refhub.elsevier.com/S0304-3975(22)00638-7/bib0E79ACCF270FFE71757B8B59F36C77DFs1

	A robust map matching method by considering memorized multiple matching candidates
	1 Introduction
	2 Related work
	2.1 Online map matching
	2.2 Offline map matching

	3 Problem model
	3.1 Preliminaries
	3.2 Point-to-road similarity
	3.3 Trajectory-to-route similarity

	4 Multiple candidate matching
	4.1 Route candidates and the last alive matching pairs
	4.2 Updating the score matrix

	5 MCM for online map matching
	5.1 Algorithm
	5.2 Example
	5.3 Online algorithm feasibility

	6 MCM for offline map matching
	6.1 Algorithm
	6.2 Example
	6.3 Offline algorithm feasibility

	7 Experiment
	7.1 Datasets used in evaluation
	7.1.1 Washington dataset
	7.1.2 Global dataset

	8 Results
	8.1 Washington dataset results
	8.1.1 Parameter selection
	8.1.2 Accuracy comparison with other methods

	8.2 Global dataset results
	8.2.1 Dataset features and parameter selection
	8.2.2 Solving matching break in offline matching
	8.2.3 Solving map matching problems in complex cases

	9 Conclusion and future work
	Declaration of competing interest
	References

