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Abstract— When the edge between two nodes is not measured,
is there any hint to know the edge property, and will the inferred
edge property be useful? To answer these questions, this paper
uniformly defines the properties of unmeasurable edges in generic
graphs. For an unmeasurable edge (i, j), it is called rangeable
if its length is unique in any realization of the graph, rigid if the
number of its possible lengths is finite, and flexible if it has infinite
possible lengths. The rangeable edge can provide deterministic
hidden knowledge as if the edge is measured. A condition for an
unmeasured edge being rangeable in 2D space is firstly proposed,
based on which a centralized identification algorithm (DRE) is
designed. However, the centralized rangeable edge identification
has the overhead of global information collection. Therefore
distributed condition and algorithm to identify rangeable edges
are further investigated. We prove that an unmeasurable edge
(i, j) is rangeable if there are at least two Disjoint Minimally
Rigid Branches (DMRBs) between i and j. The unmeasurable
edge (i, j) is rigid and flexible when the number of DMRB is one
and zero, respectively. A distributed Branching and Blacklisting
(BB) algorithm is proposed to find DMRBs, so that rangeable
edges are identified distributively. Then, the applications of
rangeable, rigid, and flexible edges are discussed. Experimental
evaluations show that the centralized and distributed algorithms
can identify a rich set of unmeasurable but rangeable edges in
distance graphs, even more than the number of directly measured
edges. Moreover, BB has a similar identification performance
as the centralized DRE algorithm and outperforms existing
distributed unmeasurable edge inference algorithms significantly.

Index Terms— Generic graph, unmeasurable edge, rangeable,
rigid, node localizability.

I. INTRODUCTION

IN THE new era of Internet of Things (IoT), the inter-node
distances can be measured through various ranging tech-

niques, such as Wi-Fi Round Trip Time (RTT) [1], Ultra-wide
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Band (UWB) [2], LoRa RTT [3], and Received Signal Strength
[4]. Using network entities as nodes and inter-node distance
measurements as edges, a distance graph can be formulated.
Distance graphs have facilitated many applications. For exam-
ple, UWB ranging technique has enabled social distancing
during COVID-19 [5]. The latest smartphones, smartwatches,
and IoT devices are also equipped with UWB modules [6],
offering the promising prospects of the ranging technique.
More application fields include swarm of drones [7], formation
of agents [8], multi robots [9], and sensor networks [10].
Location is one of the most fundamental information in these
applications. Using distances as constraints, ranging-based
localization algorithms [11], [12], [13] can calculate locations
without introducing infrastructures. A set of node coordinates
satisfying all distance constraints is called the realization of
a graph [14]. A graph is generic if all node coordinates are
algebraically independent over the rationals [15].

Along with the ranging-based localization, a question arises:
How well can the locations be determined from the distance
graph? The edge counting-based rigidity and localizability
studies provide guidance, describing the calculated location
is unique or ambiguous. The seminal work is Laman condi-
tion [16], which defines minimally rigid graphs by counting
edges. A graph is rigid if it has a spanning Laman graph [14],
and redundantly rigid if remains rigid after removing any
edge. Based on Laman condition, the Pebble Game [17]
algorithm finds rigid or redundantly rigid components (sub-
graphs) in a polynomial time. A graph is globally rigid if
it is 3-connected and redundantly rigid in 2D [15], mean-
ing that the network is localizable (i.e., theoretically has a
unique realization). In actual scenarios, a network is generally
non-localizable [18], [19], which motivates a series of node
localizability conditions and algorithms to identify localizable
nodes (i.e., a subset of nodes whose locations can be uniquely
determined from the distance graph). Since the necessary
and sufficient condition for node localizability is still absent,
currently localizable nodes are found through sufficient condi-
tions, including trilateration [20], wheel extension [21], [22],
RR3P [23], [24], [25], triangle extension [26], and iterative
maximum flow [27].

In the aforementioned rigidity and localizability analysis,
a common agreement is that only when the connectivity (i.e.,
count of edges) of the graph reaches specific conditions can
the network or a node be localizable. A notable problem is that
only the measured edges (i.e., explicit knowledge) are utilized.
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The measured edges in the distance graph act as constraints to
reduce nodes’ freedom degrees. Many nodes that are actually
localizable may be wrongly detected as non-localizable when
using sufficient conditions based on measured edges [20], [21],
[22], [23], [24], [26], [27], [28], especially in sparse graphs.

For more accurate localizability detection, an immediate
idea is to leverage the hidden information in unmeasurable
edges. Only piecemeal studies have explored the value of
unmeasurable edges, primarily focusing on two-dimensional
space (ℜ2). Jackson et al. [29], [30] defined that a pair of
vertices is globally linked if the distance between them is
the same in all equivalent generic realizations. But global
linkedness is reported to be not a generic property, i.e.,
a certain edge may be globally linked in one generic real-
ization, but not in another. Yang et al. [24] defined the edge
with unique length in all graph realizations as an “implicit
edge”. To characterize implicit edge, a sufficient condition
indicated that an unmeasured edge shared by two indepen-
dent rigid components is implicit. However, this condition
incurs a combinational number of graph partitions, which is
computationally inefficient. It was further indicated that an
edge is implicit if its endpoints form a binary vertex cut of
a redundantly rigid graph. In this paper, we refer to such
edges as Redundantly Rigid graph Cut (RR-Cut) Edges. The
“RR-Cut edges” can be identified in polynomial time, but their
number is shown to be very limited. Oliva et al. [31] proposed
“shadow edge”. They consider the free node connecting two
localizable nodes. The two possible locations of such a node
are calculated through the known locations of the localizable
nodes. Then, it checks whether one of the two locations
falls into the sensing radius of any other localizable nodes.
Once the checking succeeds, only one location is feasible
and a shadow edge is added. But shadow edges use the Unit
Disk Graph (UDG) constraint, which assumes nodes have
disk shape sensing region. Guo et al. [32] focused on the
flipping ambiguity of UAV networks. The condition when
the node locations may flip along an axis without violating
the distance constraints is proposed. Using UDG constraint,
if the flipping ambiguity is resolved, one edge can be added
since the realization becomes unique as if the edge exists.
In our previous work [12], the structure with four vertices
and five edges (i.e., a K4 graph with only one edge missing)
is defined as the basic flipping graph (BFG). In BFG, the
condition to infer the exact length of the missed edge (called
“negative edge”) is proposed based on the UDG constraint.
Therefore, existing unmeasurable edge inference algorithms
are piecemeal. Only some specific kind of rangeable edges
are inferred by each method, lacking a thorough understanding
and a systematic methodology to infer the hidden knowledge.

To address the aforementioned problem, this paper uni-
formly defines the properties of unmeasured edges. An unmea-
sured edge is rangeable if its length is unique in any realization
of the graph, rigid if it has a finite number of lengths, and
flexible if it has infinite possible lengths. The unmeasured
edges and their applications will enrich the hidden knowledge
provided by distance graphs. We present both centralized and
distributed conditions and algorithms to identify rangeable
edges. Research on edges of unique length is piecemeal, and

the research deficiency is more acute on rigid and flexible
edges. Thus, the identification of rigid and flexible edges and
their possible applications are further presented.

The main contributions of this paper are as follows:
(1) The rangeable edge identification is explored since it can

provide deterministic knowledge as if the edge is measured.
A centralized condition is firstly proposed to characterize when
an unmeasured edge is rangeable. Based on the condition,
a centralized Detect Rangeable Edge (DRE) algorithm is
designed to identify rangeable edges.

(2) A distributed condition is proposed to characterize
rangeable edges grounded in the concept of Disjoint Minimally
Rigid Branches (DMRB). A Branching and Blacklisting (BB)
algorithm is designed to find DMRBs, thereby enabling the
identification of rangeable edges. BB is distributed and can be
efficiently conducted through triangle extension. BB can also
return rigid and flexible edges by counting DMRB.

(3) The significance of identifying rangeable, rigid, and
flexible edges is demonstrated through various applications.
(i) The connectivity information introduced by rangeable edges
greatly enhances the localizable node detection accuracy,
enabling nodes previously misclassified as non-localizable
to be correctly identified as localizable; (ii) The rangeable
edges are instrumental in mining cohesive sub-graphs that
have predictable high localization accuracy, termed Strongly
Localizable Areas (SOLA); (iii) An approach to calculate the
specific lengths of the inferred rangeable edges is designed;
(iv) The rigid edges can relax the localizability condition when
using the trilateration idea; The flexible edges can characterize
weak regions of a network.

(4) Property analyses and extensive experiments validate the
proposed methods. We show both centralized and distributed
algorithms can detect a large amount of rangeable but unmea-
sured edges in distance graphs. The distributed BB algorithm
achieves almost the same performance as the centralized
DRE algorithm and outperforms existing edge inference
algorithms [12], [24], [31], [32] significantly. The inferred
hidden information shows great value in the aforementioned
applications.

The remaining sections of this paper are organized as
follows. Related work is given in Section II. The centralized
condition and centralized algorithm for rangeable edge identi-
fication are presented in Section III. The distributed condition
and distributed algorithm for rangeable, rigid, and flexible
edge identification are given in Section IV. The applications of
rangeable, rigid, and flexible edges are presented in Section V.
Experimental evaluations are in Section VI. The paper is
concluded with remarks in Section VII.

II. RELATED WORK

The localizability analysis studies and edge inference
methods in distance graphs are introduced.

A. Distance Graph Analysis

In various distance graph applications, it is desired that a
network structure can be uniquely determined from a dis-
tance graph G. Whether the structure recovered from G is
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unique or ambiguous can be characterized by a series of edge
counting-based graph analysis studies. The fundamental theory
is Laman condition [16]. A graph G with n vertices is a Laman
graph in ℜ2 if G has exactly 2n − 3 edges and any k-vertex
subgraph of G has at most 2k−3 edges. A Laman graph is also
called a minimally rigid graph. A graph is rigid if it has a span-
ning Laman graph [14]. Then, redundant rigidity is a higher
level of rigidity, meaning that G remains rigid after removing
any edge [15]. Beyond redundant rigidity, G is globally rigid
in ℜ2 if it is 3-connected and redundantly rigid [15], [33], [34].
The 3-connectivity property means that the removal of any two
vertices will not disconnect the graph. Different rigidity levels
correspond to different levels of structural recovery potential.
A network structure is uniquely determinable when the graph
is globally rigid, finitely determinable when the graph is
rigid, and has infinite ambiguities when the graph is not
rigid.

Another closely related area is node localizability, exploring
the locations of which nodes can be uniquely determined by
the constraints of the distance graph when the entire network is
not uniquely determinable. For a node, the key to determining
its localizability is counting the disjoint paths from it to
anchors [24], [27], [35]. Some preliminary knowledge about
rigidity and localizability that will be later used in this article
is listed in Appendix A to make this paper self-contained.

Overall, the rigidity and localizability studies are based on
the count of edges. Richer edge information brings stronger
rigidity and better localizability. Existing distance graph anal-
ysis mainly utilizes measured edges. When the edge between
two nodes is not measured, is there any hint to know the edge
property, and will the inferred edge property be useful? There
exist piecemeal studies exploring the inference of unmeasured
edges and discussing applications of these edges.

B. Information Inference in Distance Graph

In a distance graph G = {V, E}, an edge (i, j) is called mea-
surable if (i, j) ∈ E . Among the unmeasured edges /∈ E , there
is a portion that has unique lengths because there are enough
constraints to limit their lengths. This property has been noted
in the literature. To characterize the unmeasured but length-
unique edges, Jackson et al. [29], [30] defined globally linked
pairs of vertices. But it is not a generic property, meaning
that it will be affected by specific realization. Next, we review
other edge inference studies in detail.

1) Implicit Edge and RR-Cut Edge: Yang et al. defined
that an unmeasured edge (i, j) is implicit if the distances
between i and j are the same in all realizations of a graph G
[24]. A sufficient condition has been proposed to characterize
implicit edges. In a graph G = {V, E} with two subgraphs
G1 = {V1, E1} and G2 = {V2, E2}, where (E1, E2) is a partition
of E , if any two nodes i, j ∈ V1 ∩ V2 both belong a rigid
component in G1 and a rigid component in G2, (i, j) is implicit
if (i, j) /∈ E . This condition incurs a combinational number
of graph partitions, which is computationally inefficient. Thus
it was further proposed that in a redundantly rigid but not
3-connected component, if i and j form a binary vertex cut,
(i, j) is an implicit edge. We denote such an edge as “RR-Cut

edge”. But a redundantly rigid component usually has few
vertex cuts since it is a well-connected structure. Thus, the
number of “RR-Cut edges” is very few.

2) Shadow Edge: Another main idea to leverage the Unit
Disk Graph (UDG) constraint, i.e., dij ≤ R if (i, j) ∈ E and
dij > R if (i, j) /∈ E . Oliva et al. [31] proposed that if a
node i has only two neighbors with known locations in the
trilateration process, it has two possible locations p̂1

i and p̂2
i .

Suppose another node k with known location p̂k. If ||p̂1
i −

p̂k||2 (or ||p̂2
i − p̂k||2) is less than R, p̂2

i (or p̂1
i ) is the only

feasible location. Then, the distance between i and k is unique,
and (i, k) is called a shadow edge.

To detect shadow edges, a Shadow Edge Localization
Algorithm (SELA) was designed. SELA needs at least three
initially localized nodes with known locations. Then, each free
node i iteratively checks its neighbors. If i is connected to
3 localized nodes, it marks itself as localized. If i connects
2 localized nodes, it checks whether it has a shadow edge to
any localized node. SELA needs a node to know the locations
of all localized nodes to check the shadow edges.

3) Avoiding Flip Ambiguities (AFA) Edge: Instead of
assuming a constant ranging scope R, Guo et al. [32] defined
the maximum communication distance, within which i and j
can certainly communicate with each other.

Dij = min(max(max(D1
i )− ε), max(max(D1

j )− ε)),
(1)

where D1
i is the set of one-hop distances. Then, for any three

mutually-connected localized nodes {a, b, c}, an x-a-y coor-
dinate system is defined. The two possible locations p̂1

i and
p̂2

i of node i are calculated in this coordinate system using the
distance measurements. If ||p̂1

i − p̂b||2 (or ||p̂2
i − p̂b||2) is less

than Dib, p̂2
i (or p̂1

i ) is the only feasible location. Then, p̂i is
uniquely determined. The edge (i, b) is an edge avoiding flip
ambiguities (AFA). An Avoiding Flip Ambiguities Localization
Algorithm (AFALA) was further designed to simultaneously
avoid flip ambiguities and calculate node locations.

Both SELA and AFALA use UDG constraints, and they
are incremental algorithms. A shadow edge or an AFA edge
can be determined only when the localization process finishes.
They cannot judge the unique length property of a desired edge
(i, j) /∈ E directly. But this is actually needed in practice.

4) Negative Edge: In our previous work [12], we inferred
the length of the unmeasured edge in a special structure
generally seen in a node’s neighborhood. The graph with four
vertices and five edges, i.e., a K4 graph with only one edge
missing, is defined as a basic flipping graph (BFG). The miss-
ing edge has been proved to have and only have two possible
lengths d+

ib and d−ib. Then, if d−ib is less than R, d+
ib is inferred

to be the only feasible length, which is called a negative edge.
To find negative edges, a node only needs to detect BFG in
its neighborhood and check the two possible lengths. Finding
negative edges does not require node locations, and decisions
can be made using only local information. The major defect
is that only two hop unmeasurable edges can be inferred.

But we should note that these existing inference methods
are still piecemeal and non-uniform. In particular, the number
of inferable implicit edges is very limited. The shadow edges
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Fig. 1. The dashed edge in (a) is rangeable; in (b) is rigid; in (c) is flexible.

and AFA edges are inferred only in the trilateration process.
The negative edges are inferred only in BFG. In this paper,
we will present the general properties and general methods for
inferring the hidden knowledge from the unmeasured edges.

III. PROBLEM FORMULATION AND CENTRALIZED
RANGEABLE EDGE DETECTION

This section formulates the problem and uniformly defines
the unmeasured edge properties. The centralized condition and
algorithm to identify rangeable edges are presented.

A. Problem Formulation

Let the terminology “node” denote various
application-dependent network entities. A distance graph can
be represented by G = {V, E ,d}, where V is the set of nodes,
E is the set of edges, and d is the set of inter-node distances
measured by ranging techniques. For an arbitrary node
vi ∈ V , if it can measure the distance to another node vj ∈ V
by a ranging technique, there is a measurement dij ∈ d, and
hence an edge (i, j) ∈ E . Let dim ∈ {2, 3} be the dimension.
A realization of G is a map V → ℜdim that the realized
node coordinates satisfy all the measured inter-node distance
constraints. The following content is based on dim = 2,
whose main idea can be similarly extended to dim = 3.

Given G = {V, E ,d}, an edge (i, j) is measurable if (i, j) ∈
E . In this paper, the hidden knowledge in unmeasured edges
/∈ E is mined. From aforementioned different terminologies
of unique length unmeasured edges, there still lacks a uni-
fied definition of the properties of unmeasured edges. Thus,
regarding the possibilities of edge lengths, this paper classifies
the unmeasured edges into three categories.

Definition 1 (Properties of Unmeasured Edges): In a dis-
tance graph G = {V, E}, let dij be the length of edge (i, j).
An unmeasured edge (i, j) /∈ E is:
• Rangeable, if dij is unique in any realization of G.
• Rigid, if dij has a finite number of possible lengths in

different realizations of G.
• Flexible, if dij has infinite number of possible lengths.
Fig. 1 gives typical examples of different kinds of unmea-

sured edges in ℜ2, where the edges plotted as solid lines are
measured edges. Fig. 1(a) shows two examples of rangeable
edges. The first one is because the left component and the right
component are both rigid. Each of them has a discrete possible
realizations. Because these two components are generically
rigid, we will prove it has zero measure that the two rigid
graphs in another realization reach a consensus length of (i, j)
which is different from the ground truth. The second one is
because (i, j) is in a globally rigid component.

In Fig. 1(b), the length of (i, j) has limited possibilities,
since i, j are in a rigid graph with a limited number of realiza-
tions; In Fig. 1(c), the length of (i, j) can change continuously
as the non-rigid graph deforms continuously. Intuitively, the
most important unmeasured edges are the rangeable edges.
Since their lengths are unique, knowing these constraint infor-
mation will improve the accuracy of localizability analysis. For
example, in the first subgraph of Fig. 1(a), let the three black
nodes in the right part be the anchor nodes. The trilateration
method [20] detects vj as localizable since it is connected to
three anchors and vi as non-localizable since it is connected
to only two anchors. But once the rangeable edge (i, j) is
added, node vi becomes localizable so that the localizability
detection result is improved. Thus, we investigate identifying
rangeable unmeasured edges. The centralized exploration is
firstly conducted.

B. Centralized Rangeable Edge Detection

Note that the edge properties defined in Definition 1 are
analogous to graph rigidity properties. From the definition,
if an unmeasured edge (i, j) is inside a rigid component,
its possible length is finite, so it is at least a rigid edge.
Similarly, if an unmeasured edge (i, j) is inside a globally
rigid component, its length is unique and (i, j) is rangeable.
But this condition is not necessary. For example, the left graph
in Fig. 1(a) is not globally rigid, but (i, j) is rangeable.

Theorem 1 (Centralized Condition for Edge Rangeability):
For a graph G = {V, E}, if an unmeasured edge (i, j) /∈ E is
inside a redundantly rigid component C of G, and there are
at least three vertex-disjoint paths from i to j inside C, (i, j)
is rangeable.

Proof: If C is 3-connected, it yields that C is globally
rigid and then it is trivial that (i, j) is rangeable; If C is not
3-connected, there exist two vertices {u, v} whose removal
will disconnect C to several components so that C =

⋃
i Ci

and any two components {Ci, Cj} share two common vertices
{u, v}.

Without loss of generality, let P1, P2, and P3 denote the
three vertex-disjoint paths from i to j inside C. Denote the last
vertex connecting j on each path as b1, b2 and b3, respectively.
It can be concluded that:

1) i has three vertex-disjoint paths to B = {b1, b2, b3}.
2) The vertices b1 ̸= b2 ̸= b3 since P1, P2, and P3 are

vertex-disjoint.
It has been revealed that the following two are equivalent [23]:

a) A vertex i belongs to the redundantly rigid component
of B in which i has three vertex-disjoint paths to three
distinct vertices of B.

b) The vertex i belongs to a globally rigid subgraph of GI

that contains at least three vertices in B, where GI is
the extended graph obtained by edge replacement [23].

Based on 1) and 2), a) can be satisfied, which is equivalent
to b). Without loss of generality, let Ḡ be the globally rigid
subgraph in b). Considering that j has three distinct edges
connecting B, it is trivial that Ḡ ∪ j is also globally rigid.
Since Ḡ contains i, (i, j) is rangeable. □
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A centralized algorithm to Detect Rangeable Edges (DRE)
is designed based on Theorem 1. Algorithm 1 shows the DRE
routine, which firstly decomposes the graph into redundant
rigid components with Pebble Game [17]. Then 3-connected
components in the redundantly rigid components are detected
by SPQR-tree [36], [37]. The components that satisfy both
3-connection and redundantly rigidity are globally rigid.
In globally rigid components, all unmeasured edges are range-
able. For an unmeasured edge (i, j) in a redundantly rigid
component but not in a globally rigid component, we check
whether i has three vertex-disjoint paths to j in the redundant
component by a maximum flow algorithm [27]. If YES, (i, j)
is rangeable.

Algorithm 1 Detect Rangeable Edge (DRE)
Input: G = (V, E)
Output: ER = {(i, j)|(i, j) /∈ E ∧ (i, j) is rangeable}
Initialize: ER ← ∅ ;

1 {C1, · · · , Ck} ← decompose G into redundantly rigid
components by Pebble Game [17];

2 foreach C ∈ {C1, · · · , Ck} do
3 find 3-connected components {G1,G2, · · · ,Gm} by

SPQR-Tree [36], [37];
4 add all unmeasured edges in G1 to Gm into ER;
5 foreach {i, j} ∈ C, (i, j) /∈ E , and

{i, j} /∈ any 3-connected component do
6 check the number of disjoint paths between i

and j by maximum flow [27];
7 if i and j have 3 disjoint paths then
8 add (i, j) to ER;

9 return ER;

C. Time Complexity of DRE

In DRE, the graph is firstly decomposed into redundantly
rigid components by the Pebble Game algorithm, which
has a worst-case performance of O(n2) for a network of
n nodes [17]. Then, for finding 3-connected structures, the
SPQR-Tree algorithm requires O(n̄ + m̄) time for each com-
ponent, where n̄ and m̄ are the average number of nodes and
edges in a component [37]. The maximum flow algorithm to
count disjoint paths requires a complexity of O(n̄2(∆3 +m̄)),
where ∆ is the upper bound of neighbor numbers, i.e., every
node has no more than ∆ neighbors [27].

Later we will show the effectiveness of DRE algorithm.
But detecting rangeable edges distributively has more applica-
tion significance, because many localization algorithms [13],
[38] and localizability detection algorithms such as TP [20],
WE [22], TE [26] are all distributed. In practical applications,
a node can hardly know the global information of the network.
So it is necessary to detect the rangeable edges distributively.

IV. DISTRIBUTED RANGEABLE EDGE DETECTION

Considering an arbitrary node i, we further propose a
distributed condition and a distributed algorithm to infer
rangeable edges from i to all other unmeasured nodes in G.

Fig. 2. (a) There are two disjoint rigid branches from i to j. (b) The two
rigid branches from i to v are not disjoint.

A. Distributed Rangeability Theory

We first give some concepts that will enable us to derive the
condition for finding rangeable edges in a distributed sense.
The first is a structure called minimally rigid branch (MRB).
The second is a special kind of MRB combination: Disjoint
MRB (DMRB). The distributed rangeability condition will
then be proposed based on DMRB.

1) MRB and DMRB Concepts:
Definition 2 (Minimally Rigid Branch (MRB) Between i

and j): Suppose G = (V, E) is a minimally rigid graph
containing i and j, (i, j) /∈ E . If the removal of any vertex
v (except i, j) along with its connected edges from G makes
the remaining graph non-rigid, G is an MRB between i and
j, denoted by B(i, j).
An example of MRB can be referred to Fig. 1(b) without
considering the dashed line. The graph will become non-rigid
if any vertex is removed. We analyze the property of MRB
that will be later used in the DMRB lookup.

Lemma 1 (Node Degree Property of MRB): In ℜ2, if
B(i, j) is an MRB, then for any vertex v ̸= i, j in B(i, j),
node degree d(v) ≥ 3, and d(i) ≥ 2, d(j) ≥ 2.

Lemma 2 (MRB +(i, j) is an M -Circuit): If B(i, j) is an
MRB between i and j, then the graph composed by B(i, j) +
(i, j) is an M -Circuit.
An M -Circuit characterizes the minimal redundant rigid graph
(formally defined in Appendix A). See Appendix B and
Appendix C for the proofs of Lemma 1 and Lemma 2,
respectively. Then, the concept of DMRB is defined based
on binary vertex cut set. A binary vertex cut set in a graph
is a pair of vertices whose removal will disconnect the
graph.

Definition 3: (Disjoint Minimally Rigid Branches (DMRB)
between i and j): For two MRBs B1(i, j) and B2(i, j),
if B1(i, j) ∪ B2(i, j) don’t have any binary vertex cut set,
they are called disjoint minimally rigid branches between i
and j.

In Fig. 2(a), there are two MRBs from i to j. The MRB
B1(i, j) is composed by {i, k, a, b, j} and the MRB B2(i, j) is
composed by {i, v, b, c, j}. Since there exist no binary vertex
cut set whose removal can disconnect B1(i, j) ∪ B2(i, j),
the two branches are disjoint. In Fig. 2(b), the two MRBs
are {i, k, v, a, b, j} and {i, k, v, b, c, j}, respectively. Their
union has a binary cut set {k, v}, whose removal will dis-
connect B1(i, j) ∪ B2(i, j), so the two branches are not
disjoint.

2) Distributed Rangeable Edge Theorem: The theorem
to characterize rangeability edges in a distributed sense is
proposed based on DMRB.
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Theorem 2 (Distributed Condition for Edge Rangeability):
For an unmeasurable edge (i, j), if i and j are constrained
in at least two DMRBs, (i, j) is rangeable.
Before proving the theorem, we show the properties of (i, j)
when there are two DMRBs between i and j.

Lemma 3 (Three Vertex Disjoint Paths): If there are two
DMRBs B1(i, j) and B2(i, j) between i and j, then there
are at least three vertex disjoint paths between i and j.

The proof of Lemma 3 is in Appendix D. Consider there
are two DMRBs between i and j, denoted by B1(i, j)
and B2(i, j). We consider the union graph of B1(i, j) and
B2(i, j), denoted by M. From Lemma 2, B1(i, j) + (i, j)
and B2(i, j) + (i, j) are both M -circuits. The merging of
M = B1(i, j) ∪ B2(i, j) can be considered as merging two
M -circuits and deleting the common edge (i, j).

Lemma 4: If B1(i, j) and B2(i, j) are DMRBs between i
and j, B1(i, j) ∪B2(i, j) is a redundantly rigid graph.
The proof of Lemma 4 is in Appendix E. The intuition
to prove Theorem 2 is as follows. Since {i, j} are con-
strained in a redundantly rigid component, there is no flex-type
ambiguity [12]. The length of (i, j) has multiple realizations
only when flipping ambiguities happen. Because B1(i, j) and
B2(i, j) are disjoint branches without common flipping axis,
in generic graphs, two disjoint branches have zero measure
to generate another consensus length for (i, j) instead of the
ground truth.

Proof of Theorem 2: Let R be the set of all realizations
ofM = B1(i, j)∪B2(i, j). Let dr(i, j) denote the Euclidean
distance between the two vertices i and j in a specific
realization r ∈ R. Let DM(i, j) = ∪r∈Rdr(i, j) be the set
of possible lengths of dr(i, j) in all possible realizations of
M. SinceM is rigid, DM is finite. Let d be the ground truth
distance between i and j, thus d ∈ DM. We show that d is
the only element of the set DM. Because B1 and B2 are both
rigid, DB1 and DB2 are both finite. In MRB, the ambiguities
of d(i, j) are caused by cut sets. Since B1 and B2 are disjoint
and share no common cut set, the values in DB1 and DB2 are
independent and DB1 and DB2 have measure zero. Hence,
every element in DB1 \ d has zero probability to appear in
DB2 \ d. Thus it has zero probability that there is another
consensus length for dr(i, j) instead of d. □

B. Distributed DMRB Construction

Theorem 2 indicates that the key to identifying rangeable
edges is to find DMRBs between a pair of nodes. We revisit
a Triangle Extension (TE) operation, which allows easy
and distributed minimally rigid structure construction. Then,
we design the construction of DMRB based on TE.

1) Triangle Extension:
Definition 4 (Triangle Extension: TE [26]): Given G =

(V, E), TE starts from a root node i and one of its neighbor v
which initializes a minimally rigid K2 graph, denoted by T .
TE is a series of extensions from T . In each extension, a node
u is added into V(T ) and two edges (g1, u), (g2, u) are added
into E(T ) if g1, g2 ∈ V(T ) and (g1, u), (g2, u) ∈ E .
If a node u is extended from two nodes g1 and g2 in T ,
g1 and g2 are said to be u’s parents; u is a child of g1 and

Fig. 3. An example of triangle extension from (i, a) to j.

g2; The ancestors of u are recursively defined as u’s parents,
i.e., {g1, g2} and ancestors of {g1, g2}.

Definition 5 (TE-branch): A TE-branch is constructed by
TE from a node i to a node j, which is denoted by B(i, j).
It includes j, the ancestors of j, and the edges between them.

Fig. 3 shows an example of TE from a K2 graph until
to a node j. Note that there may exist multiple TE-branches
between i and j, since the root nodes may be {i, an arbitrary
neighbor of i}, and each step of extension may proceed in a
different direction.

2) How to Ensure MRBs are Disjoint?: From Definitions 3
and 5, the TE-branches without common binary vertex cut set
are exactly DMRBs. Thus, if any binary cut is not repeatedly
used when constructing TE-branches from i to j, the extended
branches can constitute DMRBs between i and j. To avoid
repeated binary cuts, the binary vertex cut sets in an arbitrary
branch B(i, v) are desired, which can be found through the
properties of TE-branch.

In TE, already-extended nodes will not be extended again,
so the extension is one-way, and every node is only added
once in a TE-branch. This gives an important inner structure
of a TE-branch:

Proposition 1 (Inner Structure of a TE-branch): If a
branch B(i, j) is obtained by TE, B(i, j) has following
properties:

1) Every node (except the end node) has a child.
2) Every node (except the two root nodes) has two parents.
3) A TE-branch is a 2-connected graph.

With the above structure, binary vertex cut sets in a
TE-branch can be found by the following lemma.

Lemma 5 (Binary Vertex Cut Sets in a TE-branch): In a
branch B(i, v), each parent pair of an extended node forms
a binary vertex cut set of the branch (except the two roots),
and only a pair of parents can form a binary vertex cut set.

Proof: In a TE-branch, since the extension is one-way,
every node connects with its ancestors only through its parents.
After removing the two parents, the node has no path to
the ancestors, so the graph is disconnected. Therefore, each
pair of parents of an extended node form a binary vertex
cut set.

Then, we prove only a pair of parents can form a binary
vertex cut set. Suppose two nodes {u, v} are removed, which
are not a pair of parents of any node. From Proposition 1, each
node except the end node has a child, so either u or v has a
child. The child and the child’s children still have a path to its
early ancestors through the child’s another parent instead of
u and v. Other later extended nodes whose ancestors are not
u, v are not impacted by the removal of u, v. So the removal
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of {u, v} cannot disconnect the TE-branch if they are not a
pair of parents. □

Thus, binary vertex cut sets in a branch can be detected by
parent pairs of all extended nodes.

C. Distributed Rangeable Edge Detection Algorithm

Based on Theorem 2 and Lemma 5, we are ready to
design a distributed rangeable edge detection algorithm. If any
pair of nodes is not repeatedly used for extension, MRBs
can be constructed to be disjoint. Avoiding duplicate cut
sets is implemented by logging the used cut sets. The BB
algorithm starts from an arbitrary root node i. It finds
disjoint rigid branches from i to all other nodes in the
network. Each other node j maintains a list of binary
vertex cut sets (called Blacklist) for the branches from i
to j, denoted by L(i, j). It also maintains c(i, j), i.e., the
number of disjoint branches that can reach j from i, initialized
as c(i, j) = 0.

TE will be rooted from i and one of its neighbors (say k)
and tries to extend other nodes by TE. If j can be extended
by an MRB B1 rooted from i and k, j updates L(i, j) to
the binary vertex cut set in B1(i, j) and set c(i, j) = 1. The
branch then continuously extends other nodes, until no node
can be extended. The extended graph of this round is denoted
by Gi,k, in which {i, k} are the roots of the extension. Binary
vertex cut sets in Gi,k will be detected, denoted by LGi,k

and
each extended node j updates its blacklist to L(i, j) ∩ LGi,k

,
i.e., keeping only binary vertex cut sets in the extended
graph. This is because the later rigid extension will help to
eliminate some binary vertex cut sets in the branch from
i to j.

The root then starts the next round of branching. Suppose
in the new round an MRB (say B2) rooted from i is trying to
extend j. Node j will check whether the new branch contains
a binary vertex cut set in its blacklist L(i, j). We denote this
operation as CheckBL.

1) If YES, node j will refuse to be extended in this new
branch.

2) If NO, node j will be extended by this new branch. j
increases c(i, j) = c(i, j) + 1, and sets its blacklist to
the union of its blacklists and B2(i, j) blacklist.

The blacklists of extended nodes only keep the binary vertex
cut sets in the extended graph after each round of extension.
The TE-branching from i ends when no branching can be
started from the root i, i.e., all neighbors refuse to be extended
according to their blacklists.

The detailed implementation of BB is given in Algorithm 2.
Each node v (exclude the root i) is initialized from O-state
(Open), L(i, v) = ∅, c(i, v) = 0. The root selects a O-state
neighbor to start TE. Every TE-extended node v updates its
blacklist L(i, v) and c(i, v). When this TE cannot extend
anymore, the root starts another TE using the same neighbor.
When the root and the neighbor cannot extend any new child,
the neighbor is marked in C-state (Close).

Then each node except the root i updates its blacklist
according to the binary cut set in the extended graph, i.e.,
L(i, v) = L(i, v) ∩ LGi,k

. The root selects another O-state

Algorithm 2 Branching and Blacklisting (BB)

Input: root node i; neighbors of i: N [i];
Output: set of nodes with rangeable edges to i;
Initialize: S(v)← O-state, ∀v; MRB(i, v)← ∅,
c(i, v)← 0, L(i, v) = ∅, GL← ∅,∀(i, v) /∈ E ;

1 while (∃k ∈ N [i] is in O-state) do
2 i selects k to start a TE-branch B;
3 if B reaches v then
4 if CheckBL(L(i, v), B) returns NO then
5 c(i, v)← c(i, v) + 1;
6 MRB(i, v)← MRB from i to v in B;
7 L(i, v)← binary vertex cut sets of

MRB(i, v);
8 continues B extension;

else
9 B tries to extend another node ;

10 if no other node can be extended by B then
11 Gi,k ← the extended graph from i, k;
12 GL← binary vertex cut sets of Gi,k;
13 every node v ∈ B except i, k updates

L(i, v)← L(i, v) ∩GL;
14 mark k in C-state;

15 return {v|c(i, v) ≥ 2};

neighbor to start TE. When all the neighbors of i change to
C-state, the BB algorithm rooted at i ends. All the nodes return
their predictable index c(i, v). The unmeasured edge (i, v) is
rangeable if c(i, v) ≥ 2, rigid if c(i, v) = 1, and flexible if
c(i, v) = 0.

D. Time Complexity Analysis of BB

The first round of TE will cover all the n nodes at most and
generate n − 2 binary vertex cut sets. Its time complexity is
O(n) because it doesn’t need to do the blacklisting operation
in extending each node. But in the later rounds of TE exten-
sion, each node checks its blacklist before being extended.
In the kth round of TE extension, in the worst case, the
blacklisting operation needs to compare n − 2 binary vertex
cut sets (in the branch) with another k(n − 2) binary vertex
cut sets (stored at the node). Each cut set is a pair of nodes.
We encode each pair (u, v) (u ≤ v without loss of generality)
by a number u× logn

10 + v so that finding a common pair can
be checked by number equivalence.

There are two ways to further speed up the
CheckBL(L(i, v), Bk) operation. At first, a hashtable
can be used to store the blacklist of binary vertex sets at
each node. Since the time cost of searching in a hash table is
O(1), finding whether the binary vertex cut set in the current
branch is in a node’s blacklist needs O(n) time cost. But the
hashtable needs much more storage cost. The second method
is to store the “numbers” at each node in a sorted array. Then
binary search is conducted which takes O(nlogn) time cost
in the blacklisting check process in the worst case. So the
worst case complexity of BB is O(n2logn).
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Fig. 4. Visualizing the localizable nodes detected by TP and TE.

V. APPLICATIONS OF HIDDEN KNOWLEDGE

The utility of rangeable, rigid, and flexible edges is explored
through their applications. Specifically, inferred rangeable
edges offer three valuable applications. (1) They enhance the
detection of localizable nodes, surpassing existing method-
ologies in accuracy and reliability. (2) They facilitate the
identification of StrOngly Localizable Areas (SOLAs) within
sparse networks, pinpointing regions with high localization
potential. (3) They augment the network with richer dis-
tance information, improving spatial awareness. Moreover,
rigid edges serve to relax the trilateration-based localizabil-
ity condition. Flexible edges shed light on the network’s
structural nuances, revealing insights into the distribution and
connectivity patterns.

A. Enhancing Node Localizability With Rangeable Edges

Node localizability is an important fundamental prob-
lem [13], [23], [24]. Existing distributed node localizability
detection algorithms, e.g., Trilateration Protocol (TP) [20]
and distributed Triangle Extension (TE) [26], only utilize
the measured edges, so many localizable nodes cannot be
discovered. Each inferred rangeable edge can work as an
edge length constraint to restrict the freedom of the node
locations. We add the inferred rangeable edges into the
original graph to improve the node localizability detection
accuracy.

1) Visualizing Localizable Node Improvement: Without loss
of generality, we visualize the results with the example graph
in Fig. 4. The black lines and brown lines represent the
original edges and inferred rangeable edges, respectively.
The green circles represent localizable nodes detected by a
certain algorithm and brown squares shows the non-localizable
nodes.

In Fig. 4(a), TP [20] only detects 3 localizable nodes in
the original graph. In Fig. 4(c), the anchors run BB and add
31 anchor-related rangeable edges. TP detects 16 localizable

Fig. 5. The number of localizable nods in the original graph and after adding
the anchor-related rangeable edges or all rangeable edges.

nodes. In Fig. 4(e), every node runs BB and 127 rangeable
edges are inferred. TP detects 23 localizable nodes, marking
a notable enhancement compared to the original graph.

Similar results can be obtained when TE [26] is adopted.
In Fig. 4(b), TE detects 7 localizable nodes. In Fig. 4(d),
anchors conduct BB and infer 43 rangeable edges. Then TE
can find 16 localizable nodes. In Fig. 4(f), each node conducts
BB and 127 rangeable edges are found. TE finds 23 localizable
nodes. Note that all nodes except the two at the right-bottom
form a global rigid component, so they are actually localizable.
The results show the inferred rangeable edges help both TP
and TE remarkably improve their localizable node detection
capability.

2) Statistical Results: The statistical results on the improve-
ment of node localizability detection accuracy are investigated
in Fig. 5. The network scale is set to 100 nodes with 3 anchors.
The network density is assessed by average node degree
(AvgDeg), which can be controlled by varying the ranging
scope R. Under each AvgDeg, 1,000 random networks are
generated. In sparse networks where AvgDeg is around 6 to
10, much more localizable nodes can be found when each
node conducts BB and uses the rangeable edge information.
When the network becomes denser, even if only the anchors
run BB, the increased number of localizable nodes is close
to the results when all nodes run BB. The reason is that
distributed localizable node detection algorithms generally
start from anchors and conduct extension operations to find
localizable nodes incrementally. Even the anchor-based BB
extension can greatly improve the node localizability detection
performance.

B. Mining Strongly Localizable Area With Rangeable Edges

For network localization in unevenly distributed networks,
even if the localization result of the whole network is not
satisfactory, there are still some dense components whose local
realization results are accurate [14], [34]. We define the con-
cept of StrOngly Localizable Area (SOLA) to characterize such
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Fig. 6. Effectiveness of SOLA.

substructures. The aim is to calculate the local relative node
locations. The local location results can be transformed into
global locations with synchronization methods [12]. SOLA is
not strictly defined. It refers to the subgraph with satisfactory
connectivity and therefore has the potential of good local
realization accuracy. The inferred rangeable edges enable us
to easily detect SOLA structures.

1) Visualizing Effectiveness of SOLA: We discuss detecting
SOLA using k-vertex connected component (k-VCC) [39] as
an example, which is a widely-applied cohesive subgraph
metric that can guarantee good local edge density. A k-VCC
of G is a connected subgraph in which the removal of any
k − 1 vertices will not disconnect the subgraph. Let GR

denote the graph G along with its rangeable edges. GR can
be decomposed into a sequence of VCCs {1-VCC1, · · · ,
1-VCCn1 , · · · , k-VCC1, · · · , k-VCCnk

} in a polynomial
time [39], where nk is the number of k-VCCs.

Fig. 6(a) shows GR of a network with 30 nodes, where
the original edges and rangeable edges are in black lines and
brown lines, respectively. In Fig. 6(b), GR is decomposed
into 6 VCCs. Then, locations of all nodes are calculated with
g2o [40] algorithm using inter-node distances. We call them
global-level locations. In Fig. 6(c), the calculated locations
are denoted by red asterisks, and the true locations are in
blue circles. The green line connecting the true location and
the calculated location indicates the localization error of a
certain node. In Fig. 6(d), the locations are calculated in
the respective local coordinate system of each VCC, so we
call them SOLA-level locations. Comparing the localization
errors in Fig. 6(c) and Fig. 6(d), SOLA has the potential for
much lower localization errors. Through the rangeable edges,
we can get a clearer picture about which subgraphs contain

Fig. 7. Global-level localization errors and SOLA-level localization errors.

more distance constraints and thus find better localizable
subgraphs.

2) Statistical Results: In Fig. 7, the distance noise set-
ting varies in {0, 0.1, 0.2}. 100,000 records are collected for
both global-level and SOLA-level localization errors in each
setting. The cumulative distribution function (CDF) of the
localization error is given. It is shown that the localization
error at the SOLA-level is significantly lower than that at the
global-level.

C. Enriching Distance Information With Rangeable Edges

A scheme to calculate their specific lengths is further
investigated to enrich graph distance information.

1) Calculating the Length of Rangeable Edge: Given a dis-
tance graph G = {V, E ,d}, the node locations {p̂1, · · · , p̂n}
can be calculated using the g2o algorithm [40]. Then, for each
unmeasured edge (i, j) /∈ E , an estimated length d̂ij can be
calculated as d̂ij = ||p̂i − p̂j ||2.

Considering that not all estimates are reliable, along with the
calculation, we define a concept of stability index to evaluate
the reasonableness of a distance. In specific, the stability index
is assigned as |dij − d̂ij | for an edge (i, j), where dij is the
distance between i and j in the ground truth network topology.
The stability index indicates the difference from the estimated
distance to the ground truth distance. Due to the property as
in Definition 1, the edge length of a rangeable edge should
be unique in any realization of the graph. Thus, its stability
index is expected to be minor. Next, we verify this property.

2) Statistical Results: A sparse network setting (AvgDeg =
6) and a dense setting (AvgDeg = 4) are considered for
statistical results. Under each setting, 100,000 records are
collected for each kind of edge, and the CDF of the stability
index is plotted in Fig. 8. The measurable edges, i.e., (i, j) ∈
E , have the smallest stability index because they are used as
explicit constraints. For the unmeasurable edges, the rangeable
edges have a similar stability index with the measurable edges,
especially in dense networks. This verifies the property of
the rangeable edges. The rigid unmeasured edges and flexible
unmeasured edges, are less stable. The detected rigid edges are
more stable than the flexible edges because they have a discrete
number of possible realizations. The verification shows that
even if the rangeable unmeasured edges are not utilized in the
graph optimization model, their lengths remain to be consistent
with the ground truth in the graphs’ realization results. So we
can use the edge connectivity information as if the rangeable
unmeasured edges exist. If their length information is needed,
we can use the lengths estimated by g2o confidently.
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Fig. 8. Distribution of edge stability index.

Fig. 9. Finding localizable node with rigid edge.

Other potential applications of rangeable edges include
indicating the 3D relative relations among UAVs; 3D protein
structure determination with nuclear magnetic resonance dis-
tance [41], [42], singularity analysis [43], chemical molecular
conformation [44], etc.

D. Applications of Rigid and Flexible Edges

Localizability is based on edge-counting. Rangeable edges
can increase the edge count so that more localizable nodes can
be found. It has been proposed that a node is localizable if it
is connected to 3 distinct anchors by three measurable edges
in ℜ2 [20]. We relax this condition with rigid edges.

Theorem 3: In a graph G, a node i is localizable if it is
connected to three distinct anchors by two measurable edges
and one rigid edge, where the two measurable edges are not
included in the MRB of the rigid edge.

Proof: Let a, b, and c be three distinct anchors. Without
loss of generality, suppose that (i, a) and (i, b) are measurable,
and (i, c) is rigid. Let Dic = {d1

ic · · · dk
ic} be the possible

lengths of (i, c), whose elements are determined by the MRB
between i and c. Let dic be the distance in the ground truth
realization of G, dic ∈ Dic. Then, we prove that dic is the only
element in Dic. Since dia, dib, dab, dbc, and dac are available,
as in Fig. 9, two possible lengths of (i, c) can be calculated
with our previous method [12], denoted by D̂ic = {d+

ic, d
−
ic}.

It has been proved that D̂ic covers all the possible lengths
of (i, c) [12], dic ∈ D̂ic. Since the measurable edges are not
included in the MRB between i and c, the values in Dic \ dic

and D̂ic \ dic are independent in the distance space where
Dic and D̂ic have measure zero. Therefore, any element in
Dic \ dic has zero probability to appear in D̂ic \ dic. It has

Fig. 10. A visualization of the rigid and rangeable edge inference of BB.

zero probability that there is another consensus distance for
(i, c) instead of dic. Based on the uniqueness of dia, dib, and
dic, it can be concluded that i is localizable. □

The flexible edges cannot provide deterministic or discrete
distance constraints like the rangeable edges or rigid edges.
But they can help to understand the network distribution.
For example, the set of flexible edges indicates the weakness
of the network. Such knowledge provides hints on network
attack/defense operations or node deployment optimization.

VI. PERFORMANCE EVALUATION

Extensive evaluations are conducted to show the validity and
effectiveness of the proposed methods. An overall comparison
with existing methods is summarized.

A. Visualizing the Rigid and Rangeable Edges

Fig. 10(a) and Fig. 10(b) visualize the rigid and rangeable
edges detected by the BB algorithm. For clarity, only the edges
rooted from a single root node are plotted. The root node is
represented by a red diamond. The edge between the root and
a solid circle is a measurable edge. The edges between the root
node and a hollow diamond, a hollow circle, and an asterisk
are rangeable, rigid, and flexible, respectively. It is shown that
edges with different properties are essentially separated by
binary vertex cuts to the root. In Fig. 10(b), there exists a
global binary vertex cut due to an obstacle, making all the
nodes in the left part of the network can not find disjoint
MRB to the root. Then, all the edges between the root node
and the left part of the network are flexible.

B. Statistical Results on Edge Proportion

The proportion distribution of different types of edges is
evaluated. Node’s sensing radius, the number of nodes, and
the topology seeds are controlled so that the random networks
are generated with different typologies and sparsity. In each
network, a random root node i is selected and the properties of
its edges to all other nodes are identified by DRE. In Fig. 11,
the average node degree (AvgDeg) varies from 4 to 16. For
each AvgDeg, 1,000 networks are randomly generated. Since
the lengths of measurable edges and rangeable edges are
unique, their proportions are stacked. The number of rangeable
edges from i to other nodes improves quickly with the increase
of AvgDeg. Rigid edges take more than 10% proportion when
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Fig. 11. Distribution of different types of edges w.r.t. single root node.

Fig. 12. The rangeable edges detected by the distributed algorithm BB and
the centralized algorithm DRE.

AvgDeg is 6 and 8. Rangeable edges take the most proportion
when AvgDeg is beyond 8. It is shown that rich hidden
knowledge exists in generic graphs with different sparsity, so it
is crucial to utilize these hidden knowledge for graph structure
analysis, e.g., localizable node detection.

C. Distributed Rangeable Edge Detection v.s. Centralized
Rangeable Edge Detection

The BB algorithm utilizes triangle extension for distributed
construction of minimal rigid branches, so some rangeable
edges may not be detected by BB. The case when the
distributed BB algorithm finds less rangeable edges than
the centralized DRE algorithm is illustrated in Fig. 12. For
clarity, only the rangeable edges rooted at node 28 are given.
Fig. 12(a) shows rangeable edges detected by BB. Because
nodes 9 and 20 cannot be extended from either node 3 or
node 25, making all the MRBs share a common vertex cut
(9, 10), BB fails to detect rangeable edges beyond (9, 10).

Fig. 12(b) shows rangeable edges detected by DRE.
Although the triangle extension is restricted by (9, 10), the
three vertex-disjoint path property is not affected, enabling
DRE can find rangeable edges crossing (9, 10). Thus, the
defect of distributed rangeable edge detection is mainly caused
by the limitation of triangle extension for finding MRBs.
But later extensive experiments will show that the number of
rangeable edges detected by BB is very close to DRE, showing
the effectiveness of the distributed algorithm in practice.

D. Rangeable Edges v.s. Other Existing Methods

The number of edges inferred by DRE and BB are
evaluated together and compared with existing methods,
including RR-cut edge [24], Avoiding Flip Ambiguities (AFA)

Fig. 13. The number of edges inferred by different algorithms.

Fig. 14. The hop counts of the inferred edges in the original graph.

edge [32], shadow edge [31], and negative edge [12]. The
AvgDeg varies from 4 to 12 to control the edge densities.
1,000 random networks are generated for each setting. The
number of different kinds of inferred edges are presented
in Fig. 13.

From Fig. 13, DRE and BB can infer much more
unique-length edges than other methods. Note that the vertical
axis is in a exponential form. The number of rangeable
edges detected by BB is less than DRE due to the limitation
of triangle extension. Nevertheless, both BB and DRE find
several orders of magnitude more edges than other algorithms.
The advantage is especially prominent in sparse networks since
the proposed algorithms are based on branch extension, which
works satisfactorily even the network is sparse. The number of
inferred edges increases with AvgDeg when AvgDeg <= 10.
Because more disjoint minimal rigid branches can be found
in denser networks. When AvgDeg > 10, fewer edges can be
detected, since most of the edges are already measurable.

E. On the Diversity of the Inferred Edges

Apart from the advantage of detecting more unique-length
edges, we further evaluate the difference in “diversity”. In spe-
cific, for an AFA edge [32] or a negative edge [12] (i, j), the
hop count between i and j in the original graph is always 2,
due to the principle restriction. In contrast, the hop count of
other inferred edges is more diverse. In Fig. 14, two AvgDeg
are presented, and 1,000 networks are generated under each
AvgDeg and the hop counts of the inferred edges are counted.
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TABLE I
THE COMPARISON OF EDGE INFERENCE METHODS

Fig. 15. Non-rigid virtual edge, rigid virtual edge, and rangeable virtual
edge.

It is shown that 100% AFA edge and negative edge are
2 hops in the original graph. The RR-Cut edge and the shadow
edge mainly distribute between 2 hops and 4 hops. In contrast,
the rangeable edges detected by DRE and BB vary from 2 hops
to 9 hops, which is close to the maximum number of hops of
the original graph. Thus, the rangeable edges are not only
much more numerous, but also much diverse.

F. Comparison With Existing Methods

Table I summarizes xisting methods for inferring unmea-
sured edges in distance graphs. As introduced in Section II-B,
the shadow edge, AFA edge, and negative edge methods
mainly utilize the UDG constraint to infer the unmeasured
edges. They all require the distance information of the edges,
so there are inevitably wrongly inferred edges due to the
ranging noise. Shadow edge and AFA edge don’t support
edge inference without knowing location information and
they are centralized methods. Negative edge supports edge
inference without knowing location information, and it is fully
distributed. Shadow edge requires anchor information, but
AFA edge and negative edge don’t require anchor information.
Among the three methods, negative edge method can directly
give the length of the inferred edge during inference, while the
other two (shadow edge and AFA edge) can only calculate the
edge length based on the calculated node locations.

The RR-Cut edge method is different. It does not use the
UDG constraint but finds the vertex cuts in the redundantly
rigid components. It doesn’t need the edge length informa-
tion or the anchor information and supports designated edge
inference. It is also a centralized method.

Compared with these existing methods, DRE and BB don’t
use UDG constraints; don’t need anchor information, or edge
length information. They support multi-hop and edge inference
without location information.

VII. CONCLUSION

This paper investigates the properties of unmeasurable edges
in generic graphs, i.e., rangeability, rigidity, and flexibility.

The set of rangeable edges is identified since these edges
can provide deterministic knowledge as if they are measured.
Centralized and distributed conditions to detect rangeable
edges are proposed, as well as the centralized algorithm DRE
and the distributed algorithm BB. BB can also output rigid and
flexible edges. We show that the detected edges are valuable
in various applications. Extensive simulation results show that
rich hidden knowledge can be discovered by the proposed
methods. DRE and BB can detect much more rangeable
edges than existing methods. In future work, we will further
investigate the value of the rigid and flexible edges.

APPENDIX A
PRELIMINARIES ON RIGIDITY AND LOCALIZABILITY

Different levels of rigidity theory are introduced, as well as
localizability theory and algorithms.

A. Basic Concepts in Graph Rigidity

In ℜ2, Laman [16] gave the concept of minimally rigid
graph (also called Laman graph).

Definition 6 (Minimally Rigid Graph/Laman graph): In
ℜ2, a graph G with n vertices is minimally rigid if G has
2n − 3 edges and any k vertex sub-graph has at most
2k − 3 edges.
A Laman graph will become non-rigid after the removal of
any edge. A graph is rigid if it has a spanning Laman graph.
Redundant rigidity is a higher level of rigidity.

Definition 7 (Redundant Rigid Graph [15]): A graph G is
redundantly rigid if it remains rigid after removing any edge.

M -Circuit characterizes the minimal redundant rigid graph.
Definition 8 (M -Circuit [45]): A graph G = (V, E) in

ℜ2 is an M -circuit if |E| = 2|V|−2 and |E(X )| ≤ 2|X |−3 for
all X ⊂ V with 2 ≤ |X | ≤ |V| − 1; or equivalently,
|E| = 2|V| − 2 and G − e is minimally rigid for any e ∈ E .

Beyond redundant rigidity, global rigidity considers the
unique recovery of a graph from the given set of distance
measurements. A globally rigid graph can be fully recon-
structed from the set of edge lengths in d, which is called
the realization of the graph. In ℜ2, the globally rigid graph is
characterized by edge counting-based methods [15], [33].

Definition 9 (Globally Rigid [15], [33]): A graph G is
globally rigid in ℜ2 if and only if G is 3-connected and
redundantly rigid, or G is a complete graph with at most three
vertices.

Overall, rigidity properties at different levels are mainly
defined on graphs by counting edges, characterizing whether
a graph has a discrete or unique number of realizations.
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B. Basic Concepts in Localizability

Given a distance graph, network localizability returns a
yes-or-no answer to describe whether the entire network can
be uniquely localized. Node localizability is more practical and
can finds out which nodes can be uniquely localized. On the
theoretical aspect, a network is localizable if and only if it is
globally rigid and has at least three nonlinear anchors. To find
localizable nodes, Yang et al. [24] gave a sufficient condition.

Lemma 6: (Sufficient condition for node localizability:
RR3P [24]): A node is localizable in ℜ2 if it is in a redundant
rigid component C with at least three non-collinear anchors,
and it has three vertex-disjoint paths to three anchors in C.

On the algorithmic aspect, some methods can find localiz-
able nodes in a distributed manner. The most classic approach
is based on trilateration, such as the Triangle Protocol (TP)
[20]. A trilateration graph in ℜ2 is a graph with a trilateration
ordering, π = (u1, u2, · · · , un) where u1, u2, u3 are three
anchors forming a K3 and every ui(i > 3) is adjacent to
at least three nodes before ui in π. But not all localizable
networks admit trilateration ordering. An improvement to TP
is Wheel Extension (WE) [21], [22]. A wheel graph is formed
by a cycle and a vertex adjacent to all vertices on the cycle.
If a wheel graph contains three anchors, all the nodes extended
by the wheel extension are localizable. Goldenberg et al. [46]
proposed a SWEEP localization algorithm based on bilater-
ation extension. It can localize more localizable nodes than
TP. Wu et al. [26] proposed Triangle Extension (TE), which
further improved TP and WE. TE starts from two anchor nodes
(i, j) to conduct biliteration extension. If the extension reaches
another anchor node, then all the nodes in this extended graph
are localizable. These extension-based localizability detection
and localization algorithms use only the knowledge of the
measured edges.

APPENDIX B
PROOF OF LEMMA 1

Proof: The Lemma can be proved by contradiction. If
d(v) = 1 for any v, B(i, j) is not rigid, which is contradicted
by B(i, j) being minimally rigid, so all nodes in an MRB have
degree ≥ 2; If d(v) = 2 for v ̸= i, j, if v and the two edges
connecting to v are removed, edges among other nodes will
not be impacted. The remained graph has n − 1 vertices and
2n−3−2 = 2(n−1)−3 edges. Any subgraph with k vertices
has no more than 2k−3 edges, so the remaining graph is still
minimally rigid, which contradicts that B(i, j) is an MRB. □

APPENDIX C
PROOF OF LEMMA 2

Proof: Let G(V, E) = B(i, j) + (i, j). Since B(i, j) is a
MRB, it is minimally globally rigid and have 2|V| − 3 edges,
so B(i, j) + (i, j) has 2|V| − 2 edges. From the definition of
M-Circuit in Definition 8, we prove that for all X ⊂ V with
2 ≤ |X | ≤ |V| − 1, |E(X )| ≤ 2|X | − 3.

For any subgraph G(X ) with 2 ≤ |X | ≤ |V| − 1, because
any node in a MRB except the end nodes i, j has at least
two parents and one child, it has node degree ≥ 3. Then the
removal of any vertex except i, j removes at least three edges;

the removal of i or j also removes at least three edges from G,
since i, j both have degree ≥ 2. After k = |V| − |X | vertices
are removed, suppose the subgraph induced by the removed
vertices is denoted by G′. If there are s connected components
in G′, the number of vertices in each connected component is
denoted by k1, k2, . . . , ks. Then in a connected component
with ki vertices there is at least ki − 1 edges for being
connected and at most 2ki−3 edges for being minimally rigid.
So the total number of removed edges with the k vertices are at
least 3k−

∑s
i=1(2ki − 3) +

∑s
i=1(ki − 1) ≥ 2k + 2, because∑s

i=1 ki ≤ k. So the remained number of edges is at most
2|V| − 2− (2k + 2) ≤ 2|X | − 3. □

APPENDIX D
PROOF OF LEMMA 3

Proof: Because B1(i, j) and B2(i, j) don’t share a
common vertex cut set, the path from i to j cannot be cut by
removing any two vertices. So there are at least three vertex
disjoint paths between i and j. □

APPENDIX E
PROOF OF LEMMA 4

Proof: Let M = (V, E) = B1(i, j) ∪ B2(i, j), which
is merged by identifying common edges and vertices. It is
clear that i, j ∈ V but (i, j) /∈ E . Lemma 3.6.16 in [45] gives
the following fact for a rigid graph: When G = (V, E) where
i, j ∈ V but (i, j) /∈ E , then i, j must be in a redundantly rigid
component if and only if i, j is in a rigid component of G − e
for any e ∈ E .

Let’s firstly consider to remove any edge e from M =
B1(i, j) ∪ B2(i, j). If e is in M \ B1(i, j), after removing
e, there is still a rigid graph B1(i, j) constraining {i, j}. The
same holds for e ∈M\B2(i, j). So we only need to consider
to remove any edge e from B1(i, j)∩B2(i, j). From Lemma 3,
the graph is at least 2-connected after removing any shared
edge. Note that a 2-connected graph is flexible only when it
has a 2-edge-cut, i.e., the removal of the two edges disconnects
the graph. But if there is a 2-edge-cut in M − e, it must
becauseM−e has at least two binary vertex cut sets. In such
case, Fig. 15 shows the three possible relationships between e
and the 2-edge-cut. The first case appears only when B1 and
B2 both contain the three edges. For being minimally rigid,
B1 ∪B2 must contain a binary cut set, which is contradict to
the property that B1 and B2 are disjoint. The second and the
third cases are contradict with that M doesn’t have a binary
vertex cut set. So i, j must be within a rigid component after
removing any e from M. From Lemma 3.6.16 in [45], i, j is
constrained in a redundantly rigid component. □
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