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This article presents a framework for deploying a minimal number of smart meters to accurately track
the ON/OFF states of a massive number of electrical appliances which exploits the sparseness feature
of simultaneous ON/OFF switching events of the massive appliances. A theoretical bound on the least
number of required smart meters is studied by an entropy-based approach, which qualifies the impact of
meter deployment strategies to the state tracking accuracy. It motivates a meter deployment optimization
algorithm (MDOP) to minimize the number of meters while satisfying given requirements to state tracking
accuracy. To accurately decode the real-time ON/OFF states of appliances by the readings of meters, a fast
state decoding (FSD) algorithm based on the hidden Markov model (HMM) is presented to track the state
sequence of each appliance for better accuracy. Although traditional HMM needs O(t22N) time complexity
to conduct online sequence decoding, FSD improves the complexity to O(tnU+1), where n < N and U is
an upper bound of the simultaneous switching events. Both MDOP and FSD are verified extensively using
simulations and real PowerNet data. The results show that the meter deployment cost can be saved by more
than 80% while still getting over 90% state tracking accuracy.
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1. INTRODUCTION

A recent survey shows that in our offices, up to 70% of computers and related equipment
are left on all the time [Oxford St. Hughs College Data 2010]. To reduce the energy
waste caused by such idle running, the real-time ON/OFF states of the electrical devices
are required as necessary information for smart control technologies. The ON/OFF
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state information is also an important reference for energy auditing, because the power
pattern of an appliance (i.e., how much energy an appliance consumes when it is on) can
be learned offline [Norford and Leeb 1996; Leeb et al. 1995], and therefore its energy
consumption can be inferred from its ON/OFF durations.

However, because the electrical appliances are now massive and widely distributed
in buildings, tracking their ON/OFF states is a challenging problem. Current state
tracking technologies are generally facing a difficult choice between reducing the me-
ter deployment cost and pursuing good state tracking accuracy. Dense smart meter
deployment will provide accurate state monitoring but suffers high meter deployment,
maintenance, and data collection costs. Deploying small numbers of meters generally
suffers state tracking inaccuracy and can monitor only limited numbers of appliances.
Real applications highly desire a low-cost, efficient, and scalable method for tracking
the states of massive electrical appliances.

To address these challenges, this article proposes a framework for tracking the
ON/OFF states of N appliances by deploying m � N smart meters on the load tree.
The load tree is the tree-structure power distribution network in a building. The root
of the load tree is the building power entrance. All the electrical appliances are the leaf
nodes, and the intermediate nodes of the tree are the power switches or outlets.

The framework is based on the idea of compressive sensing (CS) in which m low-
cost, embedded, smart AC meters are deployed at optimally selected positions on the
load tree. Each meter monitors the aggregated power consumption of the electrical
appliances in the subtree rooted at itself. The readings of all the meters are collected
in real time to a central server. The central server runs a state decoding algorithm to
utilize both the tree structure and the temporal state correlation feature to infer the
real-time ON/OFF states of N electrical appliances.

To minimize the meter deployment cost while preserving good state tracking accu-
racy, the critical problems in such a CS framework are as follows.

(1) Where should we deploy the limited number of smart meters and how many smart
meters are enough for reaching a required state tracking accuracy?

(2) How do we efficiently and accurately decode the states of N appliances by the
continuous readings from only m meters?

1.1. Our Contributions

A novel observation of this work is that the ON/OFF states of an appliance are highly
correlated in the time domain. When an appliance is turned on, it generally works a
long time before it is turned off, and an appliance must be turned off (on) before it
can be turned on (off), So for N appliances, their ON/OFF switching events are quite
sparse during a short observation period (e.g., a second), and the ON/OFF events of any
appliance must happen in turn. We call these two features switching sparseness and
sequence feasibility constraint. A differential matrix is therefore presented to compare
state differences between two adjacent observations which converts the problem of
state tracking to a sparse event detection problem. It enables the compressive sensing
framework.

In the CS framework, we map the observation matrix construction problem to the me-
ter deployment problem on the load tree. A desired meter deployment scenario should
not only minimize the meter deployment cost but also guarantee good state tracking
accuracy. We propose an entropy-based approach to qualify the impact of meter de-
ployment to the state decoding accuracy. Based on it, a meter deployment optimization
algorithm (MDOP) is proposed to minimize the number of meters and to optimize the
deployment positions of the meters. MDOP gives a near-optimal, adjustable deploy-
ment strategy for any given requirement to the state tracking accuracy.
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To accurately decode the real-time states of N appliances by the readings of m me-
ters, we propose a hidden Markov model (HMM)-based sequence decoding algorithm
for better accuracy. Although a traditional Viterbi algorithm needs O(t22N) time com-
plexity to decode the state sequence of HMM, which is impractical when N is large, a
fast sequence decoding (FSD) algorithm is proposed. FSD exploits the idea of offline
load tree splitting, state vector pre-ordering, and complexity-bounded online forward
and backward search. It reduces the online decoding time complexity to be polynomial,
that is, O(nUt+1), where n < N and Ut is the upper bound of simultaneous switching
events within a sampling slot. FSD enables efficient and accurate online state tracking
for massive appliances.

Extensive evaluations based on the simulated data and the real PowerNet data show
that the meter deployment cost can be saved by more than 80% while still getting more
than 90% state tracking accuracy.

1.2. Related Work

The energy auditing and monitoring problem has caught tremendous attention from
both academia and industry for the last decade. There are three main bodies of related
literature.

(1) Bottom-Up Monitoring Approach. The first category focuses on designing smart
meter networks for detailed energy monitoring. An early work is the MIT Plug sys-
tem [Lifton et al. 2007], where the design and development of the smart metering
system were reported with a trial deployment of 35 smart meters on a floor of a
building. Jiang et al. [2009a] reported the design and development of the Berke-
ley AC meter network exploiting the idea of Web of Things. The same authors
reported utilizing contextual metadata for the high-fidelity monitoring and spatial,
functional, and individual decomposition of electric usage in buildings [Jiang et al.
2009b]. A recent work [Dawson-Haggerty et al. 2012] shared insights obtained from
a year-long, 455 meter deployment of wireless plug-load electric meters in a large
commercial building. Kazandjieva et al. [2009], introduced PowerNet, which was
a hybrid sensor network for monitoring the power and utilization of computing
systems in a large academic building. Jung and Savvides [2010] proposed energy
breakdown research considering minimizing meter deployment cost, but they as-
sume that the appliance’s ON/OFF states are sensed by additional RFID sensors.
There are also solutions from the industry, such as Tendril [2012], GreenBox [2009],
and Energy Hub [2009]. In contrast to existing work, this article studies, for the
first time, the impact of the meter deployment strategy on the state decoding ac-
curacy. By the CS framework, the meter deployment costs are saved remarkably
while guaranteeing highly accurate state tracking by sequential decoding.

(2) Top-Down Disaggregation Approach. The second category focuses on the non-
intrusive load monitoring (NILM) for ON/OFF state disaggregation. In particular,
the NILM-based method can efficiently reduce the deployment cost of smart meter-
ing, since it only deploys one high-frequency smart meter at the root of the power
load tree to disambiguate the ON/OFF states of the appliances by transient or static
signal processing and pattern recognition. The first NILM approach was proposed
by Hart [1992], which used real and reactive power measurements to detect the
specific load signatures of individual appliances. Norford and Leeb [1996] and Leeb
et al. [1995] proposed transient event detection methods to analyze the specific
patterns in the spectral domains. Patel et al. [2007] tried to recognize the elec-
trical noise on the residential power lines to detect the ON/OFF switching events.
Farinaccio and Zmeureanu [1999] proposed a method to disaggregate the total elec-
tricity consumption into the major end-uses by pattern recognition. However, the
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Fig. 1. Sparse meter deployment scenario on the load tree.

NILM-based approach generally needs the high frequency meter to capture the
transient patterns, and the state monitoring accuracy decreases quickly with the
number of monitored appliances. The reason being n appliances having 2n combi-
natorial states. Ambiguity (i.e., states having similar power patterns) will become
serious when n becomes large. To tackle this challenge, the CS-frame work in this
article monitors massive appliances via smart meter deployment optimization and
sequential decoding.

(3) On/Off Detection by Additional Sensors. Instead of utilizing smart meters, the
final body addressed the ON/OFF state monitoring with other types of sensors.
For example, Kim et al. [2009] developed the ViridiScope system, which detected
the ambient signals emitted from appliances to infer the power consumption of
appliances. Gupta et al. [2010] proposed ElectriSense, which sensed EMI (electro-
magnetic interference) by a single point sensing for electrical event detection and
classification in the home. Rowe et al. [2010] used contactless sensing to monitor
the variations in electromagnetic fields. Taysi et al. [2010] proposed Tinyears to
utilize audio sensor nodes. The method in this article uses low-cost smart meters.

The rest of this article is organized as follows. We introduce the system model in
Section 2. The HMM-based efficient sequential decoding method is introduced in
Section 3. A deployment optimization algorithm is presented in Section 4. Evalua-
tion results will be presented in Section 5, and the article is concluded with discussion
of future work in Section 6.

2. SYSTEM MODEL

The energy distribution network in a building has a typical tree-like structure [Jiang
et al. 2009b]. The root of the load tree is the main power entrance of the building; each
node in the middle tier is a power break or an outlet, and the leaf nodes on the tree
are the electrical appliances. In the load tree, the power consumption at a node equals
the sum of the power consumptions of the appliances in the subtree rooted at the node.
Smart meters can be deployed at any node on the tree.

2.1. Observation Model

m meters are deployed in the load tree to track the ON/OFF states of N appliances.
We can imagine the meter deployment scenario as shown in Figure 1. Each meter
measures the real-time aggregated power of the appliances in the subtree rooted at
itself. We assume all the meters are synchronized. At time t, the observation model of

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 56, Publication date: January 2014.



Monitoring Massive Appliances by a Minimal Number of Smart Meters 56:5

a meter i can be formulated by
Zt,i =

∑
j∈S(i)

Xt, jPt, j, (1)

where S(i) is the subtree rooted at meter i, Xt, j ∈ [0, 1] is the state of appliance j at
time t, and Pt, j is the real-time power consumption of appliance j at time t. The goal of
the state decoding at meter i is to find the state vector of the appliances {Xt, j, j ∈ S(i)}
to minimize the following expected square error:

minimize:
X

E

⎧⎪⎨
⎪⎩

⎛
⎝Zt,i −

∑
j∈S(i)

Xt, jPt, j

⎞
⎠

2
⎫⎪⎬
⎪⎭

. (2)

By assuming Pt, j is a random variable with mean P j and variance δ j = αiP j , we
prove in the Appendix that the solution of Problem (2) is approximately the same as
the following:

minimize:
X

⎛
⎝Zt,i − α/2 −

∑
j∈S(i)

Xt, jP j

⎞
⎠

2

, (3)

where α is defined as the expectation of the variance/mean ratio of the appliances’
power consumption patterns, that is, α = E{δ j/P j}.
2.2. Compressive Sensing Model

Based on Eq. (3), we denote Yt,i = Zt,i − α/2 and consider the problem of decoding the
states of N appliances based on the readings of m meters during periods 1 to t.

Let matrix Y ∈ R
m×t = {Yi, j, i = 1, 2 . . . , m, j = 1, 2, . . . , t} be the readings of mmeters

from period 1 to t. Let matrix X ∈ (0, 1)N×t = {Xi, j, i = 1, 2, . . . , N, j = 1, 2, . . . , t} be
the states of N appliances from period 1 to t. Let P ∈ R

m×N = {Pi, j, i = 1, 2, . . . , m, j =
1, 2, . . . , N} be the pattern matrix. The pattern matrix can be constructed from a given
meter deployment scenario on the load tree, where item Pi, j is determined by judging
whether appliance j is in the subtree of a meter i as follows.

(1) Pi, j = P j , if appliance dj is in the subtree of meter i; otherwise Pi, j = 0.
(2) The ith row of P indicates the ith meter.

Based on these notations, we can build a model to describe the relationship between
the states of N appliances and the readings of m meters from period 1 to t.

Y = PX. (4)
Note that the appliances switch their states infrequently, which means that the state

switching events of an appliance from period 1 to t are sparse. This suggests that the
state differences could be sparsely represented if we consider the difference between
two adjacent sample values. This motivates us to design the following difference matrix
D ∈ R

t×t:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
0 0 1 . . . 0 0
... . . . . . . . . . . . .

...
0 0 0 . . . 1 −1
0 0 0 . . . 0 r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

where the last element 0 < r ≤ 1 ensures that D is invertible.
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Let � be the projection of X on D, that is, � = XD. Then, � ∈ (0, 1,−1)N×t is a
matrix indicating the state switching events of N appliances from period 1 to t, which
is a sparse matrix containing many zero entries. Particularly, �i, j = 0 means that
appliance i does not change state at time j; �i, j = 1, and �i, j = −1 means that the ith
appliance is switched on and off at time j, respectively.

Let � ∈ R
m×t be the projection of Y on D, � = YD. Then �i, j = Yi, j − Yi, j−1 is the

measurement difference of meter i at time j. Thus, the model in Eq. (4) can be converted
to a new model of sparse switching event tracking:

� = P�. (6)

Let �t be the vector to indicate the state switching events of N appliances at period t.
Then, the sparseness of �t is related to the length of the sampling interval and is also
related to time t, because the switching events occur more often in the morning and
evening but seldom at night. Therefore, we assume that by choosing a short observation
interval at different time, the sparseness of �t is bounded by Ut, that is, ‖�t‖1 ≤ Ut,
where Ut is a small integer and Ut � N.

Then the problem of decoding � by the meter’s differential measurements � can be
solved by a least-squares estimation (LSE) method with an L1-Norm constraint, which
is also known as the constraint type LASSO (Least Absolute Selection and Shrinkage
Operator) problem [Tibshirani 1994].

minimize: ‖P� − �‖2 ,

subject to: 1. ∀t, ‖�t‖1 < Ut,

2. ∀i,∀t,�i,t ∈ [0, 1,−1].
(7)

Note that � ∈ (0, 1,−1)N×t and � ∈ R
m×t contain all the state switching events and

meters’ measurement difference vectors from time 1 to t. The decoding complexity is
high when N is large. There are two key challenges in the CS framework at Eq. (7):

(1) How to construct the pattern matrix P. Because P is determined by the meter de-
ployment scenario, the construction of P is mapped to the smart meter deployment
optimization problem, that is, how and where to deploy the minimal number of
smart meters while guaranteeing good state tracking accuracy. This problem is
addressed by an entropy-based approach in Section 3, which gives the necessary
conditions for meter deployment and a meter deployment optimization algorithm.

(2) How to efficiently decode � from Eq. (7). Since we care only about �t at time
t, a trick is to decode �t sequentially. Because the state switching events have
Markov property, we can utilize all the historical observations from period 1 to
t and the temporal sparseness of the switching events to jointly infer the state
changing events of N appliances at time t, which is called sequential decoding. A
fast sequential decoding algorithm based on the hidden Markov model is presented
in Section 4, which is a polynomial-time algorithm.

3. METER DEPLOYMENT OPTIMIZATION

As previously mentioned, one of the most important tasks in Problem (7) is the observa-
tion matrix construction, which is mapped to the power meter deployment optimization
problem. It not only dominates the system deployment, maintenance, and data collec-
tion costs, but also affects the state decoding complexity and accuracy. Users generally
hope to place the least number of meters to get enough information for decoding the
ON/OFF states of the appliances.
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3.1. Problem Definition

We formally define the Meter Deployment Optimization Problem (MDOP) as follows.

Problem 1 (MDOP Problem). Given a load tree T = (V, E) with N nodes, let L ⊆ V
be the set of leaves in T . Each leaf li ∈ L has a power pattern Pi on it. A subtree
ST (v) = (V (v), E(v)) denotes the subtree of T with node v ∈ V as its root. V (v) and
E(v) denotes the set of nodes and edges in the subtree ST (v), respectively. A binary
Xi,t ∈ {0, 1} is assigned to each leaf li ∈ L, indicating the ON/OFF state of the appliance
at time t. If a smart meter is deployed at node v, it can measure the total power
consumed by its subtree ST (v), that is, measure

∑
i∈ST (v) Xi,tPi. The goal of smart

meter deployment optimization is to minimize the number of deployed meters while
still getting enough information to know the value of each Xi,t.

The MDOP problem is investigated from three aspects. (i) Entropy-based analysis is
proposed to investigate how the meter deployment scenario affects the state tracking
accuracy. (ii) A concept, clear ratio, that is, r(D, T ) is presented to qualify the goodness
of a deployment scenario for the state decoding accuracy. (iii) By utilizing the degree
bound and total power consumption bound of the load tree, an approximation algorithm
is presented to optimize the meter deployment while satisfying a given clear ratio
requirement.

3.2. The Impact of Meter Deployment to State Decoding Accuracy

Understanding how the deployment scenario will affect the state tracking accuracy
is a fundamental problem in the proposed compressive state tracking framework. We
exploit information entropy to answer this problem. In information theory, entropy (or
Shannon’s entropy) is a measurement of the uncertainty associated with a random
variable. In our problem, the sum function of the energy consumptions could be treated
as a way of compressing the binary state information Xi,t. The states of the appliances
can be correctly decoded only if the entropy (information) provided by the m meters is
not less than the entropy of N appliances’ state changing events. Therefore, we compare
the entropy obtained from the meters with the entropy of the appliances’ states.

3.2.1. Transform Load Tree to Monometer Tree Forest. An important fact for simplifying the
entropy calculation is that the load tree T can be split into m monometer trees when
m meters are deployed on T . A monometer tree is a tree with depth one, which has
only the root equipped by a meter while all the leaves are not.

Given T and D, for a node v in the load tree, if it is monitored by a smart meter, the
power consumptions of the appliances in its subtree ST (v) will be continuously moni-
tored by the smart meter so that all the parents of v can know the power consumptions
of its subtree. Thus, the subtree ST (v) can be split from the full tree T . By running a
breadth-first-search-based tree splitting algorithm [Wang et al. 2012], the load tree T
can be transformed into forest F containing m monometer trees.

Figure 2(a) shows an example of a load tree monitored by four meters. The leaf
nodes stand for appliances, while the others stand for outlets. The nodes equipped with
a smart meter are represented in black, and the nodes without smart meters are in
white. Figure 2(b) shows the forest of four monometer trees which are transformed
from Figure 2(a).

3.2.2. The Entropy Captured by the Meter in a Monometer Tree. By splitting the load tree
into m monometer trees, the entropy provided by a meter in one monometer tree
can be evaluated explicitly. Let n be the number of appliances in a monometer tree.
There will be 2n combinatorial states, which may project to w ≤ 2n distinct aggregated
power values [a1, a2 . . . aw] to be measured by the meter. Note that some states may
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Fig. 2. Load-tree splitting example.

project to the same aggregated power value at the root, which are called ambiguous
states. Consider the ith distinct aggregated power value ai measured at the root: it
may correspond to mi number of ambiguous states of the leaves. Let set Si be any
subset of appliances such that

∑
j∈Si

P j = ai. Let dv be a measurement at the smart
meter, since all the appliances take measurements in i.i.d. (independent and identically
distributed), the probability that the meter measures a value ai is

Prob(dv = ai) =
∑

Si

∏
j∈Si ,k∈S\Si

(1 − qj)qk. (8)

Thus, the entropy of the power measurements at the smart meter is

Hd(v) = −
w∑

i=1

Prob(dv = ai) log(Prob(dv = ai)). (9)

3.2.3. The Entropy of the Appliance States in a Monometer Tree. Correspondingly, let qi
denote the probability of appliance i ∈ ST (v) staying in state 0 at time t, that is,
qi = Prob(Xi,t = 0), the entropy of the appliance states in a monometer tree ST (v) can
be evaluated as follows.

Hs(v) = −
∑

i∈ST (v)

qi log qi. (10)

If Hd(v) = Hs(v), the meter provides lossless measurements, which means error-free de-
coding is possible in the monometer tree. By checking this condition in all the monome-
ter trees, we can judge whether a deployment D can provide lossless monitoring.

Definition 3.1 (Lossless Monitoring). A meter deployment scenario D splits the load
tree T into a monometer tree forest F. D is called lossless monitoring if for each
monometer tree ST (v) ∈ F, the entropy measured by the meter (Hd(v)) is equal to the
entropy of the appliance states (Hs(v)).

3.3. Evaluate the Goodness of Deployment by Clear Ratio

It is generally very expensive to guarantee that all the monometer trees be lossless,
because the lossless monitoring condition requires all the 2n states to be distinctive.
As a result, each monometer tree has only a small number of appliances; the number
of monometer trees, that is, the number of meters m therefore becomes large.

In state decoding, for the sparseness of state-switching events, even if there are
ambiguous states in a monometer tree, the real-time state can be inferred correctly
by exploiting the temporal correlation feature. Therefore, the combinatorial states in a
monometer tree are not necessary to be all distinctive.

We call the monometer tree ST (v) blurry if Hd(v) < Hs(v). Otherwise, if all the states
are distinctive, we call ST (v) clear. From information theory, we know that the less
information we get, the harder it is to recover the original state vector. Therefore, we
define the clear ratio to evaluate the goodness of the meter deployment scenario D.
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Definition 3.2 (Clear Ratio). We define the clear ratio r(D, T ) for a deployment D
on load tree T as the minimal Hd(v)

Hs(v) ratio among all the subtrees rooted at v ∈ D.

r(D, T ) = min
v∈D

Hd(v)
Hs(v)

. (11)

The clear ratio proposes a measurement to the meter deployment scenario. The state
combinations of appliances can be disaggregated without error when r(D, T ) = 1 and
decoding ambiguities increase as r(D, T ) decreases. Given a constant factor r(D, T ) as
the threshold of the clear ratio to guarantee the decoding performance, the deployment
optimization problem is to find an optimal deployment D over T to maximize r(D, T )
while minimizing the number of deployed meters.

3.4. MDOP Algorithm for the Bounded Trees with Given Clear Ratio

We have proved in a previous work that the problem of finding an optimal deployment
D over T while satisfying clear ratio r(D, T ) is NP-complete by a polynomial time
reduction from the 3-SAT problem [Hao et al. 2012a]. Therefore, finding an efficient
algorithm that outputs the optimal solution is hard. But in practice, the degrees of the
power load tree are usually small, and the total power consumptions of the tree are also
bounded. Thus we can still design an efficient MDOP algorithm to solve the practical
problems. We make two following assumptions to bound the degree and the maximum
power consumption of the tree.

(1) The maximum degree of the node in T is upper bounded by a constant d.
(2)

∑
i∈V Pi ≤ Pmax, where Pmax is a constant.

Then we will introduce a polynomial algorithm to minimize the number of meter
deployments when a clear ratio r(D, T ) is given. The flowchart shown in Figure 3
describes the algorithm. It outputs the set D ∈ V , which indicates the nodes that
should be deployed by smart meters.

The algorithm searches node v from the bottom of tree T up to the root. Thus, during
investigating node v, all the nodes in subtree ST (v) (except for v) must have been
visited before v. In each iteration, the algorithm find a set of children C in ST (v) to
deploy smart meters, that is, add C to D, and cut all the subtrees rooted at nodes
deployed by meters, that is, T = T \ ⋃

u∈C ST (u). The algorithm repeats until T is
empty.

Suppose in the ith iteration, we visit node v. Then we decide meter deployment C in
ST (v) and cut

⋃
u∈C ST (u) accordingly by checking the clear ratio of the subtree ST (v).

(1) If the clear ratio of ST (v) is less than r(D, T ), more meters need to be deployed
in ST (v). Suppose Children(v) is the set of all the children of node v. There are
at most 2d subsets of Children(v), where d is the maximum degree. It takes time
O(1) to enumerate all of these subsets. Then we could find the smallest subset
Cbest ⊆ Children(v) such that the clear ratio of the remaining subtree in ST (v) is
not less than r(D, T ) by removing all the subtrees ST (u), u ∈ Cbest. Then meters
are deployed on node u for all u ∈ Cbest, and the remaining tree T is updated by
removing all the subtrees ST (u), u ∈ Cbest.

(2) If the clear ratio of ST (v) is larger or equal than r(D, T ), we need not deploy more
meters in ST (v). We just connect all leaves of ST (v) directly to node v.

Note that a meter is needed to be deployed on the root if the remaining tree is not
empty. We have proved that the algorithm outputs a deployment strategy D which is
at most two times the size of an optimal solution for any given T and the clear ratio
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Fig. 3. MDOP algorithm for the bounded trees.

requirement r [Hao et al. 2012b]. The total running time is O(2dPmaxn2), which is
polynomial to n when d and Pmax are constant.

Note that the meter deployment cost decreases with the decreasing of r(D, T ), while
the probability of ambiguous decoding increases with the decreasing of r(D, T ). To
accurately decode the appliance states when r(D, T ) < 1, the switching sparseness
and the sequence feasibility constraint should be exploited to resolve the ambiguities
by the sequential dependence of states. In the next section, a hidden Markov model-
based state tracking method is presented.

4. HMM-BASED STATE SEQUENCE TRACKING ALGORITHM

The state transition of electrical appliances has a Markovian property, that is, an
appliance’s state at period t is only related to its state at period t −1. The states cannot
be directly observed but are inferred by measuring the aggregated power using the
smart meter. Thus the state decoding problem in Eq. (7) can be modeled by a hidden
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Markov model λ = (X0, At, B), where X0 is the initial state distribution; At is the state
transition matrix and B is the observation matrix.

Let’s consider At is time variant. An entry of At is ai, j,t = P
(
Xt = Sj |Xt−1 = Si

)
,

i, j ∈ [1, . . . , 2N], which indicates the state transition probability from Si at t − 1 to Sj
at t. An atom of B is bi, j = P(Yt = vi|Xt = Sj), which indicates the likelihood of state
Sj when the observation is vi, where vi ∈ V = {v1, v2, . . . , vM} and V is the alphabet
indicating that all the distinct observations may be measured by the power meters.
According to such an HMM model, the state sequence decoding problem can be stated
as follows.

Problem 2. Given the sequence of power measurements by m meters from time 1 to
t: Y = {Y1, Y2, . . . , Yt}, and the HMM model λ, we want to find the state sequence of N
appliances, X = {X1, X2, . . . , Xt} that maximizes the following conditional probability.

maximize
X1,...,Xt

P (X1, . . . , Xt, Y1, . . . , Yt|λ)

subject to: 1. ∀τ ∈ [1, t], ‖Xτ P − Yτ‖2 < ε,

2. ∀t ≥ 1, ‖Xt − Xt−1‖1 < Ut,

(12)

where in the first constraint, ε is the tolerable measurement error of the smart meters;
the second constraint indicates the switching sparseness constraint in Eq. (7).

4.1. Fast Sequence Decoding (FSD) Algorithm

The HMM model in Eq. (12) has 2N states and the sequence length is t. Traditional
Viterbi decoding algorithms need O(t22N) complexity to decode the most likely hidden
state sequence, which is impractical to calculate in real time when N is large. To enable
online state decoding, the online decoding complexity must be reduced. By exploiting
the tree structure of the power network and the sparseness of ON/OFF switching
events, a fast sequence decoding algorithm (FSD) is presented here. The algorithm runs
in parallel in the monometer trees, which provides polynomial complexity O(nUt+1),
where n < N is the number of appliances in a subtree. The procedure of the FSD is as
follows.

4.1.1. Offline State Sorting in Each Monometer Tree. In the monometer tree forest, because
the meters are independent, the state decoding can be run in parallel in each monome-
ter tree. For a monometer tree with n appliances, it has 2n possible states. Finding the
feasible states that most likely generate the smart meter’s observation at time t need
O(2n) comparisons. Offline state sorting is proposed to speed up the online searching.
We offline sort the 2n states according to their energy values to prepare an ordered
state vector for online binary search. Although the sorting operation has complexity
O(2nlog(2n)) = O(n2n), its needs only to be executed once offline or infrequently in the
case of monometer tree structure changes.

4.1.2. Sequence Decoding Model in HMM Graph. After the offline state sorting, an HMM-
based online state decoding algorithm is designed in each monometer tree. Consider the
HMM model, as shown in Figure 4. The HMM graph contains t layers (time intervals),
and each layer contains 2n vertices (states). Let S0

xt
be the vertex reward, which is

the likelihood that the observation yt is generated by state xt. Let Sxt,xt−1 be the edge
reward, which indicates the state transition probability. A path is a sequence of vertices
x1, x2, . . . , xt crossing t layers, whose reward is evaluated by the product of edge rewards
and vertex rewards associated with the path.

w(x1, x2, . . . , xt) = αt

t∏
u=1

S0
xu

t∏
u=2

S1
xu,xu−1

. (13)
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Fig. 4. Online fast sequence decoding algorithm.

In Eq. (13),

αt = 1∑
x1,x2,...,xt∈Pt

∏t
u=1 S0

xu

∏t
u=2 S1

xu,xu−1

(14)

is a normalizer that keeps the total rewards of all possible paths at time t equal to 1.
We define γ (xt) as the maximal reward associated to any path across t layers.

γ (xt) = max
x1,x2,...,xt−1

w(x1, x2, . . . , xt−1, xt). (15)

Thus, we can calculate the reward of the best path γ (xt) via

γ (xt)=
⎧⎨
⎩

α1S0
x1

, if t = 1,

max
xt−1

(
αt · γ (xt−1) · S1

xt,xt−1
S0

xt

)
, otherwise.

(16)

The sequence decoding algorithm is for finding the best reward path.

γ (xt)∗ = max
xt

γ (xt). (17)

A traditional Viterbi algorithm opens 2n states at time t to evaluate S0
xt

and backtracks
t − 1 steps for calculating Eq. (16). In each backtrack step, up to 2n predecessors are
opened. We use open to mean an operation of reward calculation, so Viterbi has O(t22n)
complexity. In this article, a polynomial-time online decoding algorithm is proposed.
The main idea is to open only necessary states in the forward and backward steps.

4.2. Fast Forward Search Strategy

In the forward step at time t, only the states that satisfy Constraint (18) will be open.
We call them the feasible states. p ∈ R

n×1 denotes the pattern matrix of the monometer
tree.

‖xtp − yt‖2 ≤ ε. (18)

Since, in the offline phase, the 2n states are ordered according to their energy consump-
tion values using yt − ε and yt + ε as the searching targets, we can conduct twice the
number of binary searches on the 2n states, which will find all the feasible states that
satisfy Eq. (18). ε is the foreknowledge about the metering error bound. Such a binary
search step on 2n states has complexity O(log(2n)) = O(n), which makes the forward
search very quick.
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Suppose the noises of meters follow normal distribution N(0, σ 2), then the vertex
reward can be calculated by

S0
xt

= βt
1√

2πσ 2
e− (|xt ·p−yt |)2

2σ2 , (19)

where σ can be set to ε/k and k > 3 for guaranteeing that most of the metering errors
are less than ε. Let Ft denote the feasible states at time t. βt normalizes the total
likelihoods of all feasible states at time t equal to one.

4.3. Fast Backward Search Strategy

After getting a feasible state xt by the forward search, a backtrack algorithm is needed
to calculate the best path reward γ (xt) by Eq. (16). By the state transition model At,
the link reward from xt to a predecessor xt−1 can be calculated by

S1
xt,xt−1

= pd(1 − p)n−d, (20)

where d = ||xt − xt−1||1 is the number of different states between xt and xt−1.
Since the ON/OFF switching events from t − 1 to t is sparse, which is upper bounded

by Ut, it is not necessary to open all the predecessor states. At most
∑Ut

i=1(n
i ) predecessors

may be open, which has complexity O(nUt ). Further, the infeasible predecessors should
not appear in the state sequence, which is needless to open. Thus, ∀xt ∈ Ft, at most
min{∑Ut

i=1(n
i ), |Ft−1|} predecessors need to be visited for calculating γ (xt), in which |Ft−1|

is generally a very small value, guaranteeing the calculation to be very efficient. Since
γ (xt) can be fully determined by the feasible predecessors by backtracking only one
step without the need to backtrack t steps, the backward search algorithm has the
worst complexity O(nUt ), which is polynomial to n. Then γ (xt)∗ can be calculated by
Eq. (17). For reliable decoding against the ambiguities, FSD keeps the top-K possible
paths without assertively choosing one top path. The storage cost is linear to t, which
is very small.

4.4. Lightweight HMM Model Training

Training the HMM model is an important step before using HMM to decode the state
sequence, which generally requires considerable training efforts. In this article, we
propose using the lightweight offline knowledge to build the HMM model.

(1) We propose setting up the transition matrix At with the knowledge of Ut. Assume
the ON/OFF transition probabilities are equal and i.i.d. Denote p as the occupance
probability of flipping one state. Then p can be calculated by solving the equation∑Ut

i=1 pk(1 − p)N−k{N
k } = 1. Let d be the number of different states between Si and

Sj , then the transmission probability from Sj to Si can be modeled by ai, j,t =
pd(1 − p)N−d.

(2) Modeling the observation matrix is generally difficult, because the distinct
measurements measured by m meters are numerous. We propose using a
least-squares-estimation-based online searching scheme (Eq. (18)) to replace the
explicit observation matrix model. It eliminates the efforts of training the observa-
tion matrix and efficiently speeds up the online state decoding process.

(3) The initial state of the HMM can be set by the offline knowledge of the appliance
states. Accurate knowledge of the initial states would improve the tracking accu-
racy. For example, the tracking algorithm can be started at midnight so that most
appliances are in an off state, which can be set as the initial states.
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Fig. 5. Cost saving ratio of MDOP for different scale load trees and different power pattern distributions.

Therefore, the HMM model can be set up with very limited offline knowledge, mak-
ing it practical for online decoding of states of massive appliances. The overall online
algorithm has time complexity O(nUt+1) to calculate the top-K paths at period t. It en-
ables efficient online state tracking for massive electrical appliances. The normalizers
{αt} and {βt} can be calculated in realtime, thus avoiding the difficulties of assigning
reward weights in traditional Viterbi [Forney 1973].

5. NUMERICAL EVALUATIONS

We conduct extensive experiments to evaluate the proposed MDOP algorithm and the
FSD algorithm using both the simulated data and the real data from the Powernet
dataset. In simulations, load trees containing N leaf nodes with maximum D degree
were generated randomly, simulating the arbitrary power distribution networks. The
power patterns of the electrical appliances (leaf nodes) were generated by uniform,
normal, or exponential distributions, in which the uniform power distribution simulates
the case when appliances’ power levels are almost even, normal distribution simulates
the general case, and exponential distribution simulates the case when appliances’
powers are very concentrated.

5.1. Performance of MDOP

For evaluating MDOP, we evaluate (1) its performance of saving the meter deployment
cost; (2) the subtree character after meter deployment by MDOP; and (3) the impact of
the clear ratio to the meter deployment cost.

5.1.1. Cost Saving Ratio. MDOP is applied to load trees with 100–1,000 electrical appli-
ances to evaluate the cost saving ratio. The cost saving ratio is defined by the number of
deployed smart meters given by MDOP divided by the number of appliances in the load
tree. It compares the performance of MDOP with the naive fidelity energy auditing, in
which each appliance is monitored by one appliance [Kazandjieva et al. 2009]. In these
experiments, the clear ratio in the MDOP algorithm is set to 1; the normal, uniform,
and exponential power distributions are evaluated with equal mean = 100. The cost
saving results for different load trees are plotted in Figure 5. From the results, we see
that for load trees with different sizes and different power distributions, the MDOP
algorithm can reduce the meter deployment cost by more than 75% if compared with
the one-to-one monitoring method. The cost saving ratios in exponential and uniform
power distributions are similar. When the power levels of appliances are more concen-
trated (in the normal distribution), more smart meters are required for disambiguating
the states of similar-power appliances, which accords with our general intuition.
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Fig. 6. Cost saving ratio vs. clear ratio.

5.1.2. Cost Saving Ratio vs. Clear Ratio. Figure 6 further shows how the clear ratio in the
MDOP algorithm affects the cost saving ratio. The results are shown for load trees with
normally distributed power patterns. It can be seen that the cost saving ratio decreases
with the clear ratio. When the clear ratio is set to 0.8, almost 90% deployment cost can
be saved. The results hold for different power distributions. In next section, we will
show the FSD algorithm provides accurate state tracking even when the clear ratio is
not high.

5.2. Performance of FSD

The monometer trees are generally not large in size, which reduces the online decoding
complexity remarkably, that is, the state space is reduced from 2N to 2n, where n <
N. The FSD algorithm is run in different monometer trees in parallel. Therefore, in
evaluating FSD, we focus more on the decoding accuracy than the decoding efficiency.
We evaluate the accuracy of FSD over the whole load tree by considering the average
accuracy of all the monometer trees.

e = 1
T · N

T∑
t=1

‖X(t) − X̂(t)‖1. (21)

In Eq. (21), X(t) indicates the ground truth of N appliances’ states at time t. X(t) is the
estimated states. e evaluates the average state tracking error over N appliances and
over time T . The state tracking error at time t is evaluated by

e(t) = 1
N

‖X(t) − X̂(t)‖1. (22)

5.2.1. Metering Noise vs. Tracking Accuracy. We first evaluate how the metering noises of
the smart meters affect the state tracking accuracy. In simulations, we set the metering
noise to N(0, σ 2). In the FSD algorithm, we set ε = 5σ accordingly to guarantee that
most of the metering errors are less than the tolerable error |ε|. In such a setting,
for a load tree of 500 nodes with power distribution N(200, (200/3)2), the real-time
tracking errors versus metering noises σ are plotted in Figure 7. In the experiments,
meters are deployed by MDOP with clear ratio r = 1; each point is the average result
of ten experiments. The blue curves show the tracking error of FSD, and the red curves
show the tracking error given by a traditional Viterbi algorithm. In Viterbi, the vertex
reward is assigned a weight to make it comparable to the link reward. The results show
that (1) the FSD algorithm generally has better tracking accuracy than Viterbi, and
(2) when the metering error is small, the tracking error of FSD is very small, showing
its effectiveness in disambiguating the mixed states. The FSD algorithm performs
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Fig. 7. Metering noise vs. tracking accuracy.

Fig. 8. Tracking accuracy vs. clear ratio vs. cost saving ratio.

better than Viterbi for keeping the top 500 feasible pathes instead of only the top path.
Another reason is that FSD uses product-type reward functions, which don’t suffer the
weight assignment error for balancing link rewards and vertex rewards.

5.2.2. Clear Ratio vs. Tracking Accuracy vs. Cost Saving Ratio. Then we investigate how the
clear ratio of the MDOP algorithm affects the state tracking accuracy. For focusing on
the effects of clear ratios, the metering noise σ is set to zero so that all the errors are
caused by the decoding ambiguities. For the same load tree settings in Figure 7, the
tracking accuracy versus clear ratio and corresponding cost saving ratio are plotted
in Figure 8. The results show interesting features of this CS-based state monitoring
problem. The cost saving ratio increases slowly with the reduction of the clear ratio and
reaches a saturated status when the clear ratio is less than 0.6. The tracking errors
increase very quickly with the clear ratio. The different trends of the curves indicate
some good region for choosing the clear ratio, in which the tracking error is small and
most deployment costs can be saved, as the region 0.8 to 1 in the figure.

5.3. Experiments on the Powernet Dataset

The preceding experiments assume appliances have static power patterns. We con-
duct further experiments using Powernet data [Kazandjieva et al. 2009] to relax this
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Fig. 9. Power Std/Mean for 65 appliances in Powernet.

Fig. 10. Tracking accuracy using the PowerNet dataset.

assumption. Powernet was developed by Sing group of Stanford University. They put
online the real-time power consumptions of 134 electrical appliances in a computer
science lab. We use the data of September 30, 2011, which contains feasible data of 65
appliances. Some appliances were not open on that day, and some appliances had very
small power, which are not used. The sampling frequency is 1Hz.

We first build the power patterns of these appliances. By conducting statistical anal-
ysis to 500-second power samples of each appliance, the Std/Mean for each appliance
is evaluated, which is plotted in Figure 9. It can be seen that more than 75% of the
appliances have an Std/Mean less than 0.1, indicating that the power consumption of
appliances in real applications is not highly dynamic.

Since the dataset doesn’t provide the load tree structure, we offline train each ap-
pliance’s power pattern by the average energy consumption over ten minutes and
randomly generate a load tree to assign 65 appliances randomly to the leaves. The
MDOP algorithm was run to optimize the smart meter deployment optimization on the
generated load tree with clear ratio requirement r = 1. Then, tree splitting and state
sorting are conducted offline.

In the online phase, when an appliance is on, its energy consumption is not static
but follows its energy consumption trace in the dataset. The meters measure the past
30-second moving average of the mixed real-time energy consumption of its subtree to
decode the states of appliances. The state tracking performances by FSD and Viterbi
are plotted in Figure 10. The decoding error is generally less than 20% for FSD, which
shows the potential of using the proposed framework in tracking the states of the
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dynamic power appliances, considering its large cost saving ratio. We checked the
errors and found the main reason to be that the variation range of some large power
alliances in the same monometer tree covers the ON/OFF events of the small power
appliances. Such problems can be further resolved by improving the meter deployment
scheme to consider both the mean and the variance of different electrical appliances,
which will be studied in future work.

6. CONCLUSION AND FUTURE WORK

This article presents a lightweight metering and sequence decoding framework for
tracking the ON/OFF states of massive electrical appliances. The rationale is that the
power patterns of appliances can be learned offline and the switching events of the
electrical appliances in a short interval are sparse. By entropy-based analysis, a clear
ratio is proposed to bridge the deployment cost and the tracking accuracy, which can
be seen as a parameter for describing the decoding accuracy requirement. Based on
it, MDOP, a polynomial-time deployment algorithm, is proposed to deploy the minimal
number of smart meters for a given requirement of the clear ratio. A fast state sequence
decoding algorithm FSD is proposed to facilitate a polynomial-time decoding algorithm
which overcomes the complexities of disambiguating 2N states. The experimental re-
sults show the effectiveness and good performances of the proposed methods.

This work contains some basic assumptions, such as power patterns are static, and
state transition probabilities are i.i.d. In future work, more complex power patterns and
robust deployment algorithms will be studied. The state transitions could be further
modeled by hidden semi-Markov models to consider the work duration distributions of
the appliances. Detection of transient signals could help to extract the occasion of the
switching events, and the group dependence of ON/OFF switching events could further
increase the decoding accuracy.

APPENDIX

PROOF FOR THE OBJECTIVE FUNCTION EQUIVALENCE

In this section, we prove that the objective function in Eq. (2) can be transformed
approximately to the objective function in Eq. (3). Mathematically,
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Note that X2
t, j = Xt, j , and δ j ≈ αPt, j, thus we have
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where � = αZt,i − α2/4 is a constant.
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