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ABSTRACT
Detecting locally non-overlapping, near-clique densest subgraphs

is a crucial problem for community search in social networks. As

a vertex may be involved in multiple overlapped local cliques,

such as family, office, and laboratory, detecting locally densest

sub-structures considering ℎ-clique density, i.e., locally ℎ-clique
densest subgraph (LℎCDS) attracts great interests. This paper inves-
tigates the LℎCDS detection problem and proposes an efficient and

exact algorithm to list the top-𝑘 non-overlapping, locally ℎ-clique

dense, and compact subgraphs. We in particular jointly consider

ℎ-clique compact number and LℎCDS and design a new “Iterative

Propose-Prune-and-Verify" pipeline (IPPV) for top-𝑘 LℎCDS de-

tection. (1) In the proposal part, we derive the initial bounds for

ℎ-clique compact numbers; prove the validity, and extend a convex

programming method to tighten the bounds for proposing LℎCDS

candidates without missing. (2) Then a tentative graph decomposi-

tion method is proposed to solve the challenging case when a clique

spans multiple subgraphs in graph decomposition. (3) To deal with

the verification difficulty, a basic and a fast verification method

are proposed, where the fast method constructs a small-scale flow

network to improve efficiency while preserving verification cor-

rectness. The verified LℎCDSes are output, and the candidates that

remained unclear will reenter the IPPV pipeline. (4) We further

extend the proposed methods to locally more general pattern dens-

est subgraph detection problems. We prove the exactness and low

complexity of the proposed algorithm. Extensive experiments on

real datasets show the effectiveness and high efficiency of IPPV.

1 INTRODUCTION
Finding dense subgraphs can uncover highly connected and co-

hesive structures in graphs, making it an effective tool for under-

standing complex systems. The discovery of dense subgraphs and

communities has numerous applications in diverse fields including

social networks [7, 11, 36], web analysis [1, 12], graph databases

[16, 39], and biology [21, 30]. In these applications, the identifica-

tion of near-clique subgraphs holds significant importance, as it

relaxes the requirement of complete connectivity within cliques

and allows for a certain degree of sparsity or missing connections

while still maintaining a high connectivity level.

For the importance of detecting large near-clique subgraphs [35],

the ℎ-clique densest subgraph (CDS) problem that finds near-clique

graphs formed by overlapped cliques has attracted great research

attention [9, 25, 33, 35]. This is due to the fact that a vertex is

generally involved in multiple overlapped cliques, such as a person

may be involved in cliques as family, office, laboratory, etc. By

finding the subgraph with the highest density of ℎ-cliques, CDS

uncovers the highly connected component that exhibits strong

internal interactions [3, 22, 32]. An example is to discover the most

active research group in which the researchers are forming different

mutual collaborating groups [26]. Whereas, in the context of the

real world, the discovery of a single CDS offers limited insights.

Listing the top-𝑘 CDSes is desired, but due to the substantial overlap

inherent in ℎ-cliques [38], the top-𝑘 CDSes may refer to the same

dense region, still providing limited structural insights.

Therefore, detecting the top-𝑘 non-overlapping, locally maximal,

dense, and compact, i.e., locally ℎ-clique densest subgraphs (LℎCDS)
attracts great interest. However, no efficient and exact algorithm

is known for detecting LℎCDS yet. The closest work to LℎCDS

discovery is the locally densest subgraph (LDS) discovery [28], but

LDS only considers edge density. There are several crucial differ-

ences between LDS and LℎCDS. At first, theℎ-clique compactness is

harder to evaluate. Secondly, a ℎ-clique spans on ℎ vertices, making

the subgraph division much more difficult. Thirdly, verification of

LℎCDS is more complex than verifying LDS since the clique density

and clique compactness are harder to evaluate and verify.

To address the above difficulties, we jointly consider the ℎ-clique

compact number estimation and LℎCDS detection, so as to design

a new iterative propose-prune-and-verify (IPPV) pipeline. IPPV is

composed of the following iterative steps: (1) estimating ℎ-clique

compact number bounds to propose LℎCDS candidates; (2) pruning

infeasible parts; and (3) efficient verification. To the best of our

knowledge, this paper is the first to explore the LℎCDS detection.

The key contributions of IPPV are as follows:

(1) The initialℎ-clique compact number bounds are proposed based

on the structures of graphs, and we prove that a convex pro-

gramming, which provides ℎ-clique diminishingly dense de-

composition, can be extended to tighten the bounds.

(2) We propose a tentative graph decomposition method to deal

with the case when a clique is spanning multiple subgraphs to

generate correct decomposition proposals.

(3) Efficient verification is the critical part since the verification is

complex for verifying both the ℎ-clique density and ℎ-clique

compactness. We propose a novel fast verification algorithm

by carefully constructing a size-reduced flow network using

the maximum flow algorithm. We prove the correctness and

efficiency of the proposed fast verification algorithm.

(4) At last, we further extend the iterative propose-prune-and-verify
pipeline to detect locally general pattern densest subgraphs.

More than six patterns are investigated, showing the potential

of detecting locally more general pattern densest subgraphs.

We theoretically verify the exactness and efficiency of the proposed

algorithm and conduct extensive experiments with different quality

measures on large real datasets to verify the algorithm.

2 RELATEDWORK
2.1 Densest Subgraph
The solutions to the densest subgraph (DS) problem can be classified

into two categories: exact solutions and approximation solutions.

The DS problem can be solved in polynomial time by exact methods
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based on maximum flow, linear programming, or convex optimiza-

tion. Picard et al. [27] and Goldberg [13] firstly introduced the

maximum-flow-based exact algorithm for the densest subgraph

problem. Charikar [5] proposed an LP-based exact algorithm for

the DS problem. The convex-optimization-based exact algorithm

is proposed by Danisch et al. [8] and can be extended to graphs

containing tens of billions of edges. Fang et al. [9] improved the

efficiency of the flow-based exact algorithm by locating the densest

subgraph in a specific 𝑘-core. Exact algorithms cannot scale well to

large graphs, so a large number of literatures on faster approxima-

tion algorithms for the DS problem are presented.

Charikar [5] proposed a 2-approximation algorithm for the DS

problem, which is known as the greedy peeling algorithm. Proving

that the 𝑘𝑚𝑎𝑥 -core is a 2-approximation solution to the DS problem,

Fang et al. [9] improved the greedy peeling algorithm based on

𝑘𝑚𝑎𝑥 -core. Inspired by the multiplicative weights update method,

Boob et al. [4] designed an iterative version of the greedy peeling

algorithm. Based on the MapReduce model, Bahmani et al. [2] pro-

posed an 2(1 + 𝜖)-approximation algorithm, where 𝜖 > 0. Based on

the dual of Charikar’s LP relaxation, Harb et al. [14] presented a

new iterative algorithm for the DS problem. Chekuri et al. [6] pro-

posed a flow-based approximation algorithm for the DS problem.

The DS problem has various variants focusing on different as-

pects and different types of graphs. Two recent surveys [18, 23]

detail different variations of the DS problem and their applications

to different types of graphs, such as directed graphs [5], labeled

graphs [10], and uncertain graphs [40].

2.2 ℎ-clique Densest Subgraph
Tsourakakis [35] defined the notion of ℎ-clique density and intro-

duced the ℎ-clique densest subgraph (CDS) problem. Mitzenmacher

et al. [25] presented a sampling scheme called the densest subgraph

sparsifier, yielding a randomized algorithm that produces a well-

approximate solution to the CDS problem. Fang et al. [9] proposed

more efficient exact and approximation algorithms for the CDS

problem. Sun et al. [33] aimed at developing near-optimal and exact

algorithms for the CDS problem on large real-world graphs. They

modified the Frank-Wolfe algorithm for CDS to their algorithm

kClist++ and proved the effectiveness of the proposed algorithm.

2.3 Locally Densest Subgraph
The locally densest subgraph (LDS) problem is a variant of the

densest subgraph (DS) problem. Qin et al. [28] proposed a method

to discover the top-𝑘 representative locally densest subgraphs of a

graph. The method involves defining a parameter-free definition of

an LDS, showing that the set of LDSes in a graph can be computed

in polynomial time, and proposing three novel pruning strategies to

reduce the search space of the algorithm. Trung et al. [34] observed

the hierarchical structure of maximal 𝜌-compact subgraphs and

presented verification-free approaches to improve the efficiency of

finding top-𝑘 LDSes.Ma et al. [24] proposed a convex-programming-

based solution called LDScvx to the LDS problem by introducing

the concept of the compact number and using the relations of

compactness to the LDS problem and a specific convex program.

Capitalizing on previous results [28], Samusevich et al. [31] studied

the local triangle densest subgraph (LTDS) problem,which extended

the LDS model to triangle based density. It’s worth noting that, in

essence, LDS is a specific instance of LℎCDS when ℎ = 2; LTDS is a

specific instance of LℎCDS when ℎ = 3.

3 PRELIMINARIES
Given an undirected graph 𝐺 = (𝑉 , 𝐸), we use 𝜓ℎ (𝑉𝜓ℎ

, 𝐸𝜓ℎ
) to

denote a ℎ-clique with |𝑉𝜓ℎ
| vertices and |𝐸𝜓ℎ

| edges. Ψℎ (𝐺) is the
collection of ℎ-cliques of𝐺 . 𝑑𝜓ℎ

(𝐺) denotes the ℎ-clique density of

𝐺 ,𝑑𝜓ℎ
(𝐺) = |Ψℎ (𝐺 ) ||𝑉 | , and𝑑𝑒𝑔𝐺 (𝑣,𝜓ℎ) is theℎ-clique degree of 𝑣 , i.e.,

the number of ℎ-cliques containing 𝑣 . Given a subset 𝑆 ⊆ 𝑉 ,𝐺 [𝑆] =
(𝑆, 𝐸 (𝑆)) is the subgraph induced by 𝑆 , and 𝐸 (𝑆) = 𝐸 (𝐺) ∩ (𝑆 × 𝑆).
Table 1 summarizes the main notations used in this paper.

Table 1: MAIN NOTATIONS

Notation Definition

𝐺 = (𝑉 , 𝐸 ) a graph with vertex set𝑉 and edge set 𝐸

𝑛,𝑚 𝑛 = |𝑉 |,𝑚 = |𝐸 |
𝐺 [𝑆 ] the subgraph induced by 𝑆

Ψℎ (𝐺 ) the collection of ℎ-cliques of𝐺

𝜓ℎ (𝑉𝜓ℎ , 𝐸𝜓ℎ ) a ℎ-clique (𝑉𝜓ℎ is vertex set, 𝐸𝜓ℎ is edge set)

𝑑𝜓ℎ (𝐺 ) the ℎ-clique density of𝐺 , 𝑑𝜓ℎ (𝐺 ) =
|Ψℎ (𝐺 ) |
|𝑉 |

𝜙ℎ (𝑢 ) ℎ-clique compact number of vertex 𝑢

𝑑𝑒𝑔𝐺 (𝑣,𝜓ℎ ) the ℎ-clique degree of vertex 𝑣 in𝐺

𝜙ℎ (𝑢 ) the upper bounds of 𝜙ℎ (𝑢 ) in𝐺
𝜙
ℎ
(𝑢 ) the lower bounds of 𝜙ℎ (𝑢 ) in𝐺

𝐶𝑃 (𝐺,ℎ) the convex programming of𝐺 for ℎ-clique densest

𝛼 the weights distributed from ℎ-cliques to vertices

𝑟 the weights received by each vertex

A densest subgraph in a local region not only means that such

a subgraph is not included in any other denser subgraph, but also

requires the inner density to be compact and evenly distributed.

Qin et al. [28] proposed the concept of 𝜌-compact, which gives a

reasonable definition of locally densest subgraphs. A graph 𝐺 is

𝜌-compact when removing any subset 𝑆 from 𝐺 removes at least

𝜌× |𝑆 | edges. Considering the ℎ-clique density in a graph, we define

a ℎ-clique 𝜌-compact graph as:

Definition 1 (ℎ-clique 𝜌-compact). A graph 𝐺 = (𝑉 , 𝐸) is ℎ-
clique 𝜌-compact if and only if 𝐺 is connected, and removing any
subset of vertices 𝑆 ⊆ 𝑉 will result in the removal of at least 𝜌 × |𝑆 |
ℎ-cliques in 𝐺 , where 𝜌 is a non-negative real number.

If𝐺 is ℎ-clique 𝜌-compact, then ℎ-clique degree of each vertex in

𝐺 is at least ⌈𝜌⌉, because removing any vertex will remove at least

𝜌 ℎ-cliques. Besides, the ℎ-clique density of a ℎ-clique 𝜌-compact

graph is at least 𝜌 . For any 𝜌 > 𝜌 , aℎ-clique 𝜌-compact graph is also

a ℎ-clique 𝜌-compact graph, so we define the ℎ-clique compactness

of a graph 𝐺 as the largest 𝜌 such that 𝐺 is ℎ-clique 𝜌-compact. A

subgraph 𝐺 [𝑆] of 𝐺 is a maximal ℎ-clique 𝜌-compact subgraph if

does not exist a supergraph of 𝐺 [𝑆] is also ℎ-clique 𝜌-compact.

Proposition 1. If a graph𝐺 hasℎ-clique density𝑑𝜓ℎ
(𝐺), then the

ℎ-clique compactness of the graph is at most 𝑑𝜓ℎ
(𝐺), i.e., 𝜌 ≤ 𝑑𝜓ℎ

(𝐺).

Proof. Suppose the compactness of 𝐺 is evenly higher than

𝑑𝜓ℎ
(𝐺), then removing all vertices in 𝐺 will result in the removal

of more ℎ-cliques than 𝑑𝜓ℎ
(𝐺) × |𝑉 |, which means that the ℎ-clique

density of𝐺 must be higher than 𝑑𝜓ℎ
(𝐺), and is contradict to the

fact that the ℎ-clique density of 𝐺 is 𝑑𝜓ℎ
(𝐺). □
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Proposition 1 clarifies that the ℎ-clique compactness of a graph

cannot be greater than 𝑑𝜓ℎ
(𝐺). We are then interested in finding

the locally ℎ-clique dense and compact subgraph 𝐺 [𝑆] in 𝐺 . We

formally define a locally ℎ-clique densest subgraph as follows.

Definition 2 (Locally ℎ-clique densest subgraph (LℎCDS)).
A subgraph 𝐺 [𝑆] of 𝐺 is a locally ℎ-clique densest subgraph of 𝐺
if and only if 𝐺 [𝑆] is a ℎ-clique 𝑑𝜓ℎ

(𝐺 [𝑆])-compact subgraph, and
there does not exist a supergraph 𝐺 [𝑆 ′] of 𝐺 [𝑆] (𝑆 ′ ⊋ 𝑆), such that
𝐺 [𝑆 ′] is also ℎ-clique 𝑑𝜓ℎ

(𝐺 [𝑆])-compact.

Most applications in the real world usually require finding the

top-𝑘 dense regions of a graph [28], so we focus on finding the

top-𝑘 LℎCDSes with the largest densities. When 𝑘 is large enough,

all LℎCDSes can be found. We formulate the problem as follows.

Definition 3 (Locally ℎ-clique densest subgraph Problem
(LℎCDS Problem)). Given a graph 𝐺 , an integer ℎ, and an integer
𝑘 , the locally ℎ-clique densest subgraph problem is to compute the
top-𝑘 LℎCDSes ranked by the ℎ-clique density in 𝐺 .

: 𝑡𝑜𝑝−1 𝐿4𝐶𝐷𝑆

𝒗𝟏𝟔

𝒗𝟏𝟎

𝒗𝟖

𝒗𝟒𝒗𝟑

𝒗𝟓𝒗𝟐 𝒗𝟏𝟖
𝒗𝟏𝟏

𝒗𝟏

𝒗𝟕

𝒗𝟏𝟗

𝒗𝟐𝟎

: 𝑡𝑜𝑝-1 𝐿3𝐶𝐷𝑆

𝑺𝟏𝑺𝟑𝑺𝟐

𝟎

𝟐

𝟐

𝟐𝟐

𝟐

𝟎

𝟎
𝟎

𝟏

𝟐

𝟏

𝟐 𝟏

𝟐

𝟏

𝟐

𝟏𝟑

𝟔

𝟏𝟑

𝟔

𝝓𝟑(𝒗𝒊) : 3 − 𝑐𝑙𝑖𝑞𝑢𝑒 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖

𝟏𝟑

𝟔
𝟏𝟑

𝟔

𝟏𝟑

𝟔

𝟏𝟑

𝟔

𝟏

Figure 1: An example of the locallyℎ-clique densest subgraph

Figure 1 shows an example of the LℎCDS. We use 𝑆1,𝑆2, and 𝑆3
to represent {𝑣12, ..., 𝑣17}, {𝑣2, ..., 𝑣6}, and {𝑣8, ..., 𝑣11}. When ℎ = 3,

the top-1 L3CDS is𝐺 [𝑆1], which has a 3-clique density of
13

6
, since

there are thirteen 3-cliques in it. The top-1 and top-2 L4CDSes are

𝐺 [𝑆2] and 𝐺 [𝑆1]. They both have a 4-clique density of 1.

Note that an edge in a graph𝐺 is a 2-clique; therefore, the inten-

sively studied LDS problem [24, 28] can be seen as an instance of

the LℎCDS problemwhenℎ = 2. Similarly, the LTDS problem [31] is

exactly the L3CDS problem. Therefore, the LℎCDS problem studied

in this paper provides a more general framework, and we boldly

infer that our method can be generalized from ℎ-clique to general

patterns, which means that we can give an algorithmic framework

to solve a wider range of locally pattern densest problems.

4 LℎCDS DISCOVERY
In this section, we focus on the design of the LℎCDS discovery

problem. According to the concept of ℎ-clique compactness of a

graph 𝐺 , each subgraph of a graph 𝐺 has its own compactness.

However, each vertex may be contained in various subgraphs with

different compactness. Therefore, we introduce the concept of ℎ-

clique compact number for each vertex in a graph.

Definition 4 (ℎ-clique compact number). Given a graph 𝐺 =

(𝑉 , 𝐸), for each vertex 𝑢 ∈ 𝑉 , the ℎ-clique compact number of 𝑢 is the
largest 𝜌 such that 𝑢 is contained in a ℎ-clique 𝜌-compact subgraph
of 𝐺 , denoted by 𝜙ℎ (𝑢).

In the following theorem, we prove the relationship between the

LℎCDS and the ℎ-clique compact numbers of vertices within it.

Theorem 1. Given an LℎCDS 𝐺 [𝑆] in 𝐺 , for each vertex 𝑢 ∈ 𝑆 ,
the ℎ-clique compact number of 𝑢 equals to the ℎ-clique density of
𝐺 [𝑆], i.e., 𝜙ℎ (𝑢) = 𝑑𝜓ℎ

(𝐺 [𝑆]).

Proof. As 𝐺 [𝑆] is a maximal ℎ-clique 𝑑𝜓ℎ
(𝐺 [𝑆])-compact sub-

graph, for each 𝑢 ∈ 𝑆 , there exists no other subgraph 𝐺 [𝑆 ′] con-
taining 𝑢 such that 𝐺 [𝑆 ′] is a ℎ-clique 𝜌-compact subgraph with

𝜌 > 𝑑𝜓ℎ
(𝐺 [𝑆]). We prove the claim by contradiction. Suppose

𝐺 [𝑆 ′] is a ℎ-clique 𝜌-compact subgraph with 𝜌 > 𝑑𝜓ℎ
(𝐺 [𝑆]) and

𝑢 ∈ 𝑆 ′, we have 𝑑𝜓ℎ
(𝐺 [𝑆 ′]) ≥ 𝜌 > 𝑑𝜓ℎ

(𝐺 [𝑆]). First 𝑆 ′ ⊆ 𝑆 , be-

cause 𝐺 [𝑆] is a maximal ℎ-clique 𝑑𝜓ℎ
(𝐺 [𝑆])-compact subgraph

and 𝑆 ′ ∩ 𝑆 ≠ ∅. If we remove 𝑈 = 𝑆\𝑆 ′ from 𝐺 [𝑆], the number of

ℎ-cliques removed is |Ψℎ (𝐺 [𝑆]) | − |Ψℎ (𝐺 [𝑆 ′]) | = 𝑑𝜓ℎ
(𝐺 [𝑆]) × |𝑆 | −

𝑑𝜓ℎ
(𝐺 [𝑆 ′]) × |𝑆 ′ | < 𝑑𝜓ℎ

(𝐺 [𝑆]) × (|𝑆 | − |𝑆 ′ |) = 𝑑𝜓ℎ
(𝐺 [𝑆]) × |𝑈 |.

This contradicts that𝐺 [𝑆] is ℎ-clique 𝑑𝜓ℎ
(𝐺 [𝑆])-compact. Hence,

𝑑𝜓ℎ
(𝐺 [𝑆]) is the ℎ-clique compact number of all vertices in 𝑆 . □

Based on Theorem 1, once we get the ℎ-clique compact number

of each vertex in 𝐺 , we can obtain top-𝑘 LℎCDSes. For example, in

Figure 1, we list the 3-clique compact numbers of all vertices of 𝐺 .

It is obvious that 𝐺 [𝑆1] and 𝐺 [𝑆2] are both L3CDSes.

However, computing the ℎ-clique compact numbers directly

and accurately is difficult. So we jointly consider ℎ-clique compact

number and LℎCDS to design a new “iterative propose-prune-and-

verify" pipeline for top-𝑘 LℎCDS detection, which is called IPPV. In

the proposal part, the true LℎCDSes are allowed to be encapsulated

in the proposed candidates, but without missing true LℎCDSes.

Proper graph decomposition method should be designed, since a

clique may span multiple subgraphs to be decomposed. In the veri-

fication part, each correct LℎCDS should be outputted, and LℎCDS

candidates that can be further pruned should be indicated.

𝐺, 𝑘, ℎ

InitializeBd
𝜙
ℎ
, 𝜙ℎ

ProposeCL

𝑇𝑜𝑝-𝑘 𝐿ℎ𝐶𝐷𝑆

VerifyLhCDS

𝐺′

𝒮, 𝜙
ℎ
, 𝜙ℎ

SEQ-kClist++ TentativeGD DeriveSG
𝛼, 𝑟 መ𝒮

𝒮
Prune

Figure 2: Flow diagram of IPPV

Figure 2 gives the flow diagram of IPPV. It has four main parts:

1) calculating the initial bounds of the ℎ-clique compact numbers of

vertices; 2) iteratively proposing all LℎCDS candidates (generating

approximate ℎ-clique compact numbers; decomposing the graph

tentatively; grouping vertices and tightening bounds); 3) pruning
invalid vertices; 4) verifying the locally densest property of all can-

didates to find top-𝑘 LℎCDS, and we, in particular, propose a basic

algorithm and a fast algorithm for verification. As a general algo-

rithm framework, all blue parts are extensions of existing methods,

and all orange parts are our proof and innovation for this problem.

4.1 Initial ℎ-clique Compact Number Bounds
In order to derive LℎCDS candidates, we first give initial upper and

lower bounds of ℎ-clique compact number 𝜙ℎ (𝑢). Specifically, we
denote 𝜙ℎ (𝑢) and 𝜙ℎ (𝑢) as the upper and lower bound of 𝜙ℎ (𝑢) in



Anon.

𝐺 . We use (𝑘,𝜓ℎ)-core[9], which is a cohesive subgraph model to

compute the initial bounds.

Definition 5 ((𝑘,𝜓ℎ)-core). Given a graph𝐺 , the (𝑘,𝜓ℎ)-core is
the largest subgraph of𝐺 , in which the ℎ-clique degree of each vertex
is at least 𝑘 . The ℎ-clique-core number of a vertex 𝑢 ∈ 𝑉 , denoted by
𝑐𝑜𝑟𝑒𝐺 (𝑢,𝜓ℎ), is the highest 𝑘 of (𝑘,𝜓ℎ)-core containing 𝑢.

Proposition 2. ℎ-clique compact number 𝜙ℎ (𝑢) has following
relations to the ℎ-clique-core number 𝑐𝑜𝑟𝑒𝐺 (𝑢,𝜓ℎ).
(1) A (𝑘,𝜓ℎ)-core subgraph is ℎ-clique 𝑘

ℎ
-compact. For any 𝑢 ∈ 𝑉 ,

𝜙
ℎ
(𝑢) can be assigned as 𝑐𝑜𝑟𝑒𝐺 (𝑢,𝜓ℎ )

ℎ
;

(2) If𝐺 [𝑆] is an LℎCDS of𝐺 , for all𝑢 ∈ 𝑆 , 𝑐𝑜𝑟𝑒𝐺 (𝑢,𝜓ℎ) ≥ 𝑑𝜓ℎ
(𝐺 [𝑆]).

For any 𝑢 ∈ 𝑉 , 𝜙ℎ (𝑢) can be assigned as 𝑐𝑜𝑟𝑒𝐺 (𝑢,𝜓ℎ).

Proof. Any vertex in a (𝑘,𝜓ℎ)-core subgraph is contained in at

least 𝑘 ℎ-cliques. By removal of any subset 𝑆 from the (𝑘,𝜓ℎ)-core,
at least

𝑘
ℎ
× |𝑆 | ℎ-cliques would be removed. For any 𝑢 ∈ 𝑉 , there

is a ℎ-clique
𝑐𝑜𝑟𝑒𝐺 (𝑢,𝜓ℎ )

ℎ
-compact subgraph of 𝐺 that contains 𝑢,

then
𝑐𝑜𝑟𝑒𝐺 (𝑢,𝜓ℎ )

ℎ
is an lower bound of 𝜙ℎ (𝑢). The second relation

can be obtained from the fact that an LℎCDS𝐺 [𝑆] in a graph𝐺 is a

(⌈𝑑𝜓ℎ
(𝐺 [𝑆])⌉,𝜓ℎ)-core subgraph of 𝐺 . For any 𝑢 ∈ 𝑉 , if an LℎCDS

containing 𝑢, then 𝑐𝑜𝑟𝑒𝐺 (𝑢,𝜓ℎ) is an upper bound of 𝜙ℎ (𝑢). □

Algorithm 1: The bound initialization algorithm

Input:𝐺 = (𝑉 , 𝐸 ), ℎ
Output: 𝜙ℎ, 𝜙ℎ

1 foreach 𝑢 ∈ 𝑉 do compute 𝑐𝑜𝑟𝑒𝐺 (𝑢,𝜓ℎ ) ;
2 foreach 𝑢 ∈ 𝑉 do
3 𝜙ℎ (𝑢 ) ← 𝑐𝑜𝑟𝑒𝐺 (𝑢,𝜓ℎ ) ; 𝜙

ℎ
(𝑢 ) ← 𝑐𝑜𝑟𝑒𝐺 (𝑢,𝜓ℎ )

ℎ
;

4 return 𝜙ℎ , 𝜙ℎ
;

According to Proposition 2, we can get the initial bounds of

ℎ-clique compact number 𝜙ℎ (𝑢) of 𝐺 (Lines 2-3) by Algorithm 1.

4.2 Candidate LℎCDS Proposal
The initial upper and lower bounds for ℎ-clique compact numbers

from ℎ-clique-core numbers are relatively loose. In this section, we

focus on how to tighten the bounds and propose LℎCDS candidates.

4.2.1 Overall Algorithm for Candidate LℎCDS Proposal. The overall
candidate LℎCDS proposal algorithm is given in Algorithm 2. Ap-

proximateℎ-clique compact number is calculated via SEQ-kClist++
(Line 1); the preliminary partition of 𝐺 and recalculated values

are obtained via TentativeGD (Line 2); tighter upper and lower

bounds for ℎ-clique compact numbers and the further partition of

𝐺 (stable ℎ-clique group) are calculated via DeriveSG (Line 3). The

sub-procedures introduce each of the above functions (Lines 5-33).

4.2.2 Generate Approximate ℎ-clique Compact Number. Inspired
from a classical convex programming [8, 24], we propose a con-

vex programming for finding the diminishingly-ℎ-clique-dense de-

composition, and prove that the optimal solution of our convex

programming is exactly the ℎ-clique compact number of a graph𝐺 .

Algorithm 2: The candidate LℎCDS proposal algorithm

Input:𝐺 = (𝑉 , 𝐸 ) , number of iterations𝑇 , 𝜙ℎ, 𝜙ℎ

Output: S, 𝜙ℎ, 𝜙ℎ

1 (𝛼, 𝑟 )← SEQ-kClist++ (𝐺 ′,𝑇 ) ;

2 ˆS, 𝛼, 𝑟 ← TentativeGD (𝐺,𝛼, 𝑟 );

3 S, 𝜙ℎ, 𝜙ℎ
← DeriveSG (

ˆS, 𝛼, 𝑟, 𝜙ℎ, 𝜙ℎ
);

4 return S, 𝜙ℎ, 𝜙ℎ
;

5 Procedure SEQ-kClist++(𝐺 ′,𝑇)
6 foreach ℎ-clique𝜓ℎ in𝐺 do 𝛼𝑢,𝜓ℎ

← 1

ℎ
, ∀𝑢 ∈ 𝑉𝜓ℎ

;

7 foreach 𝑢 ∈ 𝑉 do 𝑟 (𝑢 ) ← ∑
𝜓ℎ ∈Ψℎ (𝐺 ) :𝑢∈𝜓ℎ

𝛼𝑢,𝜓ℎ
;

8 foreach iteration t=1,...,T do
9 𝛾𝑡 ← 1

𝑡+1 ; 𝛼 ← (1 − 𝛾𝑡 ) ∗ 𝛼 ; 𝑟 ← (1 − 𝛾𝑡 ) ∗ 𝑟 ;
10 foreach ℎ-clique𝜓ℎ do
11 𝑣𝑚𝑖𝑛 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑣∈𝜓ℎ

𝑟 (𝑣) ;
12 𝛼𝑣𝑚𝑖𝑛 ,𝜓ℎ

← 𝛼𝑣𝑚𝑖𝑛 ,𝜓ℎ
+ 𝛾𝑡 ;𝑟 (𝑣𝑚𝑖𝑛 ) ← 𝑟 (𝑣𝑚𝑖𝑛 ) + 𝛾𝑡 ;

13 return (𝛼, 𝑟 ) ;
14 Procedure TentativeGD(𝐺,𝛼, 𝑟)
15 sort vertices in𝑉 in descending order according to 𝑟 ;

16 𝑃 ← {𝑝 |𝑝 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑝≤𝑞≤𝑛𝑑𝜓ℎ
(𝐺 [𝑉[1:𝑞 ] ] ) } ;

17 ˆS ← partition𝑉 according to 𝑃 ;

18 foreach𝜓ℎ ∈ Ψℎ (𝐺 ) do
19 𝑝 ← max

{
1 ≤ 𝑖 ≤ 𝑙 : 𝜓ℎ ∩ 𝑆𝑖 ≠ ∅

}
;

20 𝑠 ← ∑
𝑢∈𝜓ℎ\𝑆𝑝

𝛼𝑢,𝜓ℎ
;

21 ∀𝑢 ∈ 𝜓ℎ\𝑆𝑝 , 𝛼𝑢,𝜓ℎ
← 0;

22 ∀𝑢 ∈ 𝜓ℎ ∩ 𝑆𝑝 , 𝛼𝑢,𝜓ℎ
← 𝛼𝑢,𝜓ℎ

+ 𝑠��𝜓ℎ∩𝑆𝑝
�� ;

23 foreach 𝑢 ∈ 𝑉 do 𝑟 (𝑢 ) ← ∑
𝜓ℎ ∈Ψℎ (𝐺 ) :𝑢∈𝜓ℎ

𝛼𝑢,𝜓ℎ
;

24 return ˆS, 𝛼 , 𝑟 ;

25 Procedure DeriveSG( ˆS, 𝛼, 𝑟, 𝜙ℎ, 𝜙ℎ
)

26 while ˆS is not empty do
27 𝑆 ′ ← pop out the first candidate from

ˆS; 𝑆 ← 𝑆 ∪ 𝑆 ′;
28 if 𝑆 is a stable ℎ-clique group then put 𝑆 into S; 𝑆 ← ∅ ;
29 foreach 𝑆 ∈ S do
30 foreach 𝑢 ∈ 𝑆 do
31 𝜙ℎ (𝑢 ) ←𝑚𝑖𝑛{𝜙ℎ (𝑢 ),𝑚𝑎𝑥𝑣∈𝑆𝑟 (𝑣) };
32 𝜙

ℎ
(𝑢 ) ←𝑚𝑎𝑥 {𝜙

ℎ
(𝑢 ),𝑚𝑖𝑛𝑣∈𝑆𝑟 (𝑣) };

33 return S, 𝜙ℎ , 𝜙ℎ
;

Intuitively, the aim of CP(𝐺,ℎ) is that each ℎ-clique𝜓ℎ ∈ Ψℎ (𝐺)
tries to distribute its unit weight among its ℎ vertices such that the

sum of the weight received by the vertices are as even as possible.

We use 𝛼𝑢,𝜓ℎ
to represent the weight assigned to 𝑢 from ℎ-clique

𝜓ℎ and 𝑟 (𝑢) to denote the sum of the weight assigned to 𝑢 from

ℎ-cliques that containing 𝑢. This intuition suggests that we can

consider the objective function: 𝑄𝐺,ℎ (𝛼) :=
∑
𝑢∈𝑉 𝑟 (𝑢)2, in which

𝑟 (𝑢) = ∑
𝜓ℎ∈Ψℎ (𝐺 ) :𝑢∈𝜓ℎ

𝛼𝑢,𝜓ℎ
, for all 𝑢 ∈ 𝑉 . The convex program-

ming is:

CP(𝐺,ℎ) := min

{
𝑄𝐺,ℎ (𝛼) : 𝛼 ∈ D(𝐺,ℎ)

}
,

where the domain is:

D(𝐺,ℎ) :=
𝛼 ∈

∏
𝜓ℎ∈Ψℎ (𝐺 )

R𝜓ℎ

+ : ∀𝜓ℎ ∈ Ψℎ (𝐺),
∑︁
𝑢∈𝜓ℎ

𝛼𝑢,𝜓ℎ
= 1

 .
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Here, we demonstrate that the ℎ-clique compact numbers can

be derived from the optimal solution of CP(𝐺,ℎ).

Theorem 2. Suppose (𝛼∗, 𝑟∗) is an optimal solution of CP(𝐺,ℎ).
Then, ∀𝑢 ∈ 𝑉 , 𝜙ℎ (𝑢) = 𝑟∗ (𝑢), i.e., each 𝑟∗ (𝑢) in 𝑟∗ is exactly the
ℎ-clique compact number of 𝑢.

Proof. For any vertex 𝑢 ∈ 𝑉 , let 𝑆+ = {𝑣 ∈ 𝑉 |𝑟∗ (𝑣) > 𝑟∗ (𝑢)},
𝑆= = {𝑣 ∈ 𝑉 |𝑟∗ (𝑣) = 𝑟∗ (𝑢)}, 𝑆− = {𝑣 ∈ 𝑉 |𝑟∗ (𝑣) < 𝑟∗ (𝑢)}, 𝑢 ∈ 𝑆=.
𝑆+= denotes the vertices that are contained by ℎ-cliques that in-

cluding vertices both in 𝑆+ and 𝑆=. We prove 𝐺 [𝑆+ ∪ 𝑆=] is a ℎ-
clique 𝑟∗ (𝑢)-compact subgraph. First, removing 𝑆= from𝐺 [𝑆+∪𝑆=]
will result in the removal of 𝑟∗ (𝑢) × |𝑆= | cliques in 𝐺 [𝑆+ ∪ 𝑆=].
We know that for all (𝑣,𝑤) ∈ 𝐸 ∩ (𝑆+ × 𝑆=), 𝑟∗ (𝑣) > 𝑟∗ (𝑤) and
𝛼𝑣,𝜓ℎ (𝑣,𝑤∈𝜓ℎ ) = 0. Otherwise, if there exists (𝑣,𝑤) ∈ 𝐸 ∩ (𝑆+ × 𝑆=)
such that 𝛼𝑣,𝜓ℎ (𝑣,𝑤∈𝜓ℎ ) > 0, there exists 𝑟∗ (𝑣) −𝑟∗ (𝑤) > 𝜖 > 0. We

can reduce 𝛼𝑣,𝜓ℎ (𝑣,𝑤∈𝜓ℎ ) by 𝜖 and increase 𝛼𝑤,𝜓ℎ (𝑣,𝑤∈𝜓ℎ ) by 𝜖 , and
the objective function be decreased by 2𝜖 (𝑟∗ (𝑣) −𝑟∗ (𝑤) −𝜖), which
contradicts the optimality of 𝑟∗. Similarly, we can prove that for all

(𝑣,𝑤) ∈ 𝐸∩(𝑆=×𝑆−), 𝑟∗ (𝑣) > 𝑟∗ (𝑤) and 𝛼𝑣,𝜓ℎ (𝑣,𝑤∈𝜓ℎ ) = 0. There-

fore, 𝑟∗ (𝑢) × |𝑆= | = ∑
𝜓ℎ∈Ψℎ (𝐺 ) :𝑣∈𝑆=,𝑣∈𝜓ℎ

𝛼𝑣,𝜓ℎ
= |Ψℎ (𝐺 [𝑆=]) ∪

Ψℎ (𝐺 [𝑆+=]) |. 𝑟∗ (𝑢)×|𝑆= | is exactly the number ofℎ-cliques to be re-

movedwhen removing 𝑆= from𝐺 [𝑆+∪𝑆=]. Meanwhile, for any 𝑆 ′ ⊆
𝑆+ ∪ 𝑆=,we have that 𝑟∗ (𝑢) × |𝑆 ′ | ≤ ∑

𝜓ℎ∈Ψℎ (𝐺 ) :𝑣∈𝑆 ′,𝑣∈𝜓ℎ
𝛼𝑣,𝜓ℎ

≤∑
𝜓ℎ∈Ψℎ (𝐺 [𝑆+∪𝑆= ] ) :𝑣∈𝑆 ′,𝑣∈𝜓ℎ

1, which means removing any 𝑆 ′ ⊆
𝑆+ ∪ 𝑆= from 𝐺 [𝑆+ ∪ 𝑆=] will result in the removal of at least

𝑟∗ (𝑢) × |𝑆 ′ | ℎ-cliques. Therefore, 𝐺 [𝑆+ ∪ 𝑆=] is a ℎ-clique 𝑟∗ (𝑢)-
compact subgraph. Analogously, we can prove that for any other

subset 𝑆 ′′ containing 𝑢, 𝐺 [𝑆 ′′] is a ℎ-clique 𝜌-compact subgraph,

where 𝜌 ≤ 𝑟∗ (𝑢), by contradiction. Therefore, 𝑟∗ (𝑢) is the largest
𝜌 such that 𝑢 is contained in a ℎ-clique 𝜌-compact subgraph of 𝐺 ,

which is exactly the ℎ-clique compact number of 𝑢. □

𝒗𝟒𝒗𝟑

𝒗𝟓𝒗𝟐

𝒗𝟏

𝝓𝟑 𝒗𝟐 =
𝟏𝟎

𝟓
= 𝟐

The optimal solution of CP(𝑮,3) of 𝒗𝟐: 

The 3-clique compact number of 𝒗𝟐: 

Because for all 𝒉-clique 𝝆-compact subgraphs that 

contains 𝒗𝟐 , the largest 𝝆 is 2.

𝒓∗ 𝒗𝟐 =
𝝍𝟑∈𝜳𝟑 𝑮 :𝒗𝟐∈𝝍𝟑

𝜶∗𝒗𝟐,𝝍𝟑 = 𝟔 ∗
𝟏

𝟑
= 𝟐

(𝜶∗𝒗𝟐,𝝍𝟑 𝒗𝟐,𝒗𝟑,𝒗𝟒 = 𝜶∗𝒗𝟐,𝝍𝟑 𝒗𝟐,𝒗𝟑,𝒗𝟓 = 𝜶∗𝒗𝟐,𝝍𝟑 𝒗𝟐,𝒗𝟑,𝒗𝟔

= 𝜶∗𝒗𝟐,𝝍𝟑 𝒗𝟐,𝒗𝟒,𝒗𝟓 = 𝜶∗𝒗𝟐,𝝍𝟑 𝒗𝟐,𝒗𝟒,𝒗𝟔 = 𝜶∗𝒗𝟐,𝝍𝟑 𝒗𝟐,𝒗𝟓,𝒗𝟔 =
𝟏

𝟑
)

Part of Figure 2 (use 𝒗𝟐 as an example): 

all vertices and edges that connected to 𝒗𝟐 𝒓∗ 𝒗𝟐 = 𝝓𝟑 𝒗𝟐 = 𝟐

And

Shows

𝑺𝟐

Figure 3: An example of the relationship between 𝑟∗ (𝑢) and
𝜙ℎ (𝑢) of a vertex 𝑢 in 𝐺

Consider the convex programming CP(𝐺, 3) for 𝐺 in Figure 1,

we use 𝑣2 as an example, shown in Figure 3. The 3-clique compact

number of 𝑣2 is 2, and the optimal solution 𝑟∗ (𝑣2) value is also 2. It

is clear that for each 𝑢 ∈ 𝑉 , 𝑟∗ (𝑢) is exactly 𝜙ℎ (𝑢).
Exactly attaining the (𝛼∗, 𝑟∗) is difficult, so we use the approx-

imate solution (𝛼, 𝑟 ) of CP(𝐺,ℎ) to tighten the ℎ-clique compact

bounds. Frank-Wolfe-based algorithm is efficient for finding approx-

imate solutions of CP(𝐺) [24]. However, FW-based algorithm for ℎ-

clique densest requires a large amount ofmemory. SEQ-kClist++[33]

is better for approximately calculating 𝛼𝑢,𝜓ℎ
for each ℎ-clique𝜓ℎ ,

𝑢 ∈ 𝜓ℎ , as well as 𝑟 (𝑢) for each vertex 𝑢. All 𝛼𝑢,𝜓ℎ
are initialized to

1

ℎ
(Line 6). 𝑟 (𝑢) stores the sum over all 𝛼𝑢,𝜓ℎ

’s such that𝜓ℎ contains

𝑢 (Line 7). At each iteration, 𝛼 and 𝑟 are modified simultaneously as

follows. For each ℎ-clique𝜓ℎ , we find the minimum 𝑟 (𝑣𝑚𝑖𝑛) among

𝜓ℎ , and new values for the 𝛼𝑣𝑚𝑖𝑛,𝜓ℎ
and the 𝑟 (𝑣𝑚𝑖𝑛) are computed

as convex combinations (Lines 8-12).

4.2.3 Tentative Graph Decomposition. After getting approximate

(𝛼, 𝑟 ), we can derive a graph decomposition from the given (𝛼, 𝑟 ).

Proposition 3. Given an LℎCDS𝐺 [𝑆] in𝐺 , ∀(𝑢, 𝑣) ∈ 𝐸, if 𝑢 ∈ 𝑆
and 𝑣 ∈ 𝑉 \𝑆 , we have 𝜙ℎ (𝑢) > 𝜙ℎ (𝑣).

Considering vertices adjacent to 𝐺 [𝑆1] but not in 𝐺 [𝑆1] in Fig-

ure 1, such as 𝑣11 and 𝑣18, their 3-clique compact numbers fulfill

Proposition 3: 𝜙3 (𝑣11) = 1

2
< 13

6
, 𝜙3 (𝑣18) = 1 < 13

6
.Proposition 3 is

helpful for choosing LℎCDSes from all subgraphs.

Proposition 4 (Disjoint property). Suppose𝐺 [𝑆] and 𝐺 [𝑆 ′]
are two LℎCDSes in 𝐺 , we have 𝑆 ∩ 𝑆 ′ = ∅.

Proof. Without loss of generality, we suppose 𝑑𝜓ℎ
(𝐺 [𝑆]) ≥

𝑑𝜓ℎ
(𝐺 [𝑆 ′]). We prove the proposition by contradiction. Suppose

𝑆 ∩ 𝑆 ′ ≠ ∅. According to the definition of LℎCDS, 𝐺 [𝑆] ⊈ 𝐺 [𝑆 ′].
Since𝐺 [𝑆] and𝐺 [𝑆 ′] are two LℎCDSes, the graph induced by 𝑆⋃ 𝑆 ′

is a connected ℎ-clique 𝑑𝜓ℎ
(𝐺 [𝑆 ′])- compact graph which is larger

than 𝑆 ′. That contradicts the fact that 𝐺 [𝑆 ′] is an LℎCDS. □

Proposition 4 proves that all the LℎCDSes in a graph𝐺 are pair-

wise disjoint. Therefore, the number of LℎCDSes of𝐺 is bounded by

|𝑉 |, and the LℎCDSes can be used to identify all the non-overlapping
ℎ-clique dense regions of a graph.

We then propose TentativeGD to generate tentative graph de-

composition for proposing LℎCDS. The vertices in 𝑉 are sorted

based on 𝑟 values descendingly (Line 15). The initial partition
ˆS of

the graph is extracted based on the descending order (Lines 16-17).

For each𝜓ℎ ∈ Ψℎ (𝐺), if the clique𝜓ℎ is contained in multiple vertex

sets, the vertex set with the largest set index will be recorded as 𝑝 ,

and the 𝛼 value of𝜓ℎ will be redistributed to vertices in 𝑆𝑝 (Lines

18-22). In other words, for the convenience of partition, the 𝛼 value

of𝜓ℎ straddling multiple vertex sets is redistributed to a vertex set

with the lowest 𝑟 value. Finally, the 𝑟 values of all vertices in 𝑉 are

recalculated (Line 23).

4.2.4 Stable ℎ-clique Group Derivation. After getting the initial

bounds of ℎ-clique compact numbers in InitializeBd and a pre-

liminary partition of the graph in TentativeGD, we consider obtain-
ing the tighter bounds of ℎ-clique compact numbers and a further

partition of the graph, to calculate LℎCDS candidates. Inspired by

two concepts, stable subset [8] and stable group [24], for solving

the ℎ-clique densest subgraph problem, we propose the definition

of the stable ℎ-clique group.

Definition 6 (stable ℎ-clique group). Given a feasible solution
(𝛼, 𝑟 ) to CP(𝐺,ℎ), a stable ℎ-clique group with respect to (𝛼, 𝑟 ) is a
non-empty vertex group 𝑆 ∈ 𝑉 , if the following conditions hold.
(1) For any 𝑣 ∈ 𝑉 \𝑆 , 𝑟 (𝑣) > 𝑚𝑎𝑥𝑢∈𝑆𝑟 (𝑢) or 𝑟 (𝑣) < 𝑚𝑖𝑛𝑢∈𝑆𝑟 (𝑢);
(2) For any 𝑣 ∈ 𝑉 , if 𝑟 (𝑣) > 𝑚𝑎𝑥𝑢∈𝑆𝑟 (𝑢), ∀𝜓ℎ (𝑢, 𝑣 ∈ 𝜓ℎ), 𝛼𝑣,𝜓ℎ

= 0;
(3) For any 𝑣 ∈ 𝑉 , if 𝑟 (𝑣) < 𝑚𝑖𝑛𝑢∈𝑆𝑟 (𝑢), ∀𝜓ℎ (𝑢, 𝑣 ∈ 𝜓ℎ), 𝛼𝑢,𝜓ℎ

= 0.
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Figure 4: The relations between stable 3-clique subset B and
stable 3-clique group S

The concept of the stableℎ-clique subsetB is related to the stable

ℎ-clique group S, and the relations between stable ℎ-clique subset

and stable ℎ-clique group can be shown in Figure 4 with ℎ = 3. All

stable ℎ-clique groups are disjoint, and a stable ℎ-clique subset is

the union of the previous stable ℎ-clique subset and the first stable

ℎ-clique group outside this previous stable ℎ-clique subset. Either

B or S can form a consecutive subsequence of the whole sequence,

and we only use the stable ℎ-clique group in our algorithm.

Theorem 3. Given a feasible solution (𝛼, 𝑟 ) to CP(𝐺,ℎ) and a
stable ℎ-clique group 𝑆 with respect to (𝛼, 𝑟 ), for all 𝑣 ∈ 𝑆 , we have
that𝑚𝑖𝑛𝑢∈𝑆𝑟 (𝑢) ≤ 𝜙ℎ (𝑣) ≤ 𝑚𝑎𝑥𝑢∈𝑆𝑟 (𝑢).

Proof. According to Theorem 2, for all 𝑢 ∈ 𝑉 , 𝑟∗ (𝑢) = 𝜙ℎ (𝑢).
Suppose there exists a vertex 𝑣 ∈ 𝑆 such that 𝑟∗ (𝑣) = 𝜙ℎ (𝑣) <
𝑚𝑖𝑛𝑢∈𝑆𝑟 (𝑢) ≤ 𝑟 (𝑣). Since ∑𝑢∈𝑉 𝑟 (𝑢) = ∑

𝑢∈𝑉 𝑟∗ (𝑢), correspond-
ingly, there must exist another vertex 𝑤 ∈ 𝑉 , 𝑟∗ (𝑤) = 𝜙ℎ (𝑤) >
𝑟 (𝑤). The difference between 𝑟 (𝑤) and 𝑟∗ (𝑤) means that there

exists 𝜓ℎ contains both 𝑣 and 𝑤 , 𝛼𝑣,𝜓ℎ
> 0. Since 𝑆 is a stable

ℎ-clique group, according to the third condition in Definition 6,

𝑟 (𝑤) > 𝑚𝑖𝑛𝑢∈𝑆𝑟 (𝑢). There exists 𝜖 > 0, we can increase 𝑟∗ (𝑣) by
𝜖 and decrease 𝑟∗ (𝑤) by 𝜖 to decrease the value of the objective

function. This contradicts that 𝑟∗ is the optimal solution to CP(𝐺,ℎ).

By the same token, for all𝑢 ∈ 𝑉 , 𝑟∗ (𝑢) = 𝜙ℎ (𝑢) ≤ 𝑚𝑎𝑥𝑢∈𝑆𝑟 (𝑢). □

Based on Theorem 3, the stable ℎ-clique groups can give tighter

bounds of ℎ-clique compact numbers, so we propose DeriveSG
algorithm to derive the stableℎ-clique groups, which are our LℎCDS

candidates. In DeriveSG, the subsets in ˆS are checked one by one;

if the subset is a stable ℎ-clique group, it will be pushed into the

set of stable ℎ-clique groups S; otherwise, in the next iteration,

the current subset 𝑆 will be merged with the next subset 𝑆 ′ (Lines
26–28). Then, the upper and lower bounds of ℎ-clique compact

numbers are updated based on Theorem 3 (Lines 29–32).

4.3 Pruning for Candidate LℎCDS Derivation
We prove that the following lemma can help to prune invalid ver-

tices that are certainly not contained by any LℎCDS.

Lemma 1. For any 𝑣 ∈ 𝑉 , 𝑣 is not contained by any LℎCDS in 𝐺
if either of the following two conditions is satisfied.

(1) If there exists (𝑢, 𝑣) ∈ 𝐸, such that 𝜙
ℎ
(𝑢) > 𝜙ℎ (𝑣), 𝑣 is invalid;

(2) Let𝐺 ′ denote the graph after pruning all invalid vertices in con-

dition (1). 𝜙
𝐺

ℎ (𝑢) is the upper bound of 𝜙𝐺ℎ (𝑢) in 𝐺 . For any 𝑢 in

𝐺 ′, if 𝜙
𝐺 ′

ℎ (𝑣) < 𝜙
ℎ
(𝑣), 𝑣 is invalid.

Proof. First,we prove condition (1). For any 𝑢, 𝑣 ∈ 𝑉 , (𝑢, 𝑣) ∈ 𝐸,
if 𝜙

ℎ
(𝑢) > 𝜙ℎ (𝑣), then 𝜙ℎ (𝑢) > 𝜙ℎ (𝑣). According to Proposition 3,

𝑣 is not contained in LℎCDS,i.e., 𝑣 is invalid.

For condition (2), 𝜙
𝐺 ′

ℎ (𝑢) < 𝜙
ℎ
(𝑢) means that to form a ℎ-clique

𝜙
ℎ
(𝑢)-compact subgraph containing 𝑢, some already pruned ver-

tices are needed. So using the vertices in 𝐺 ′ only cannot form a

ℎ-clique𝜙
ℎ
(𝑢)-compact subgraph containing𝑢. Therefore,𝑢 cannot

be contained by any LℎCDS in 𝐺 ,i.e., 𝑣 is invalid. □

According to Lemma 1, we design Pruning Rule to prune invalid

vertices by condition (1) and condition (2). An example can be

seen in Figure 1 with ℎ = 3. 𝑣9 and 𝑣11 can be pruned, because

for edge (𝑣6, 𝑣9), 𝜙
3

(𝑣6) = 2 > 𝜙
3
(𝑣9) = 1

2
; for edge (𝑣11, 𝑣12),

𝜙
3

(𝑣12) = 13

6
> 𝜙

3
(𝑣11) = 1

2
. Analogously, the vertices 𝑣1, 𝑣7, 𝑣18,

𝑣19, and 𝑣20 are also pruned by condition (1).

We denote the graph after pruning by 𝐺 ′. Some vertices in 𝐺 ′

become invalid vertices, because any LℎCDS in 𝐺 containing these

vertices needs to include some already pruned vertices, which can

not form an LℎCDS in𝐺 ′. Therefore, we utilize condition (2). Based

on Proposition 2, for any vertex 𝑢 ∈ 𝑉 (𝐺 ′), 𝑐𝑜𝑟𝑒𝐺 (𝑢,𝜓ℎ) provides
an upper bound of 𝜙𝐺

′

ℎ
(𝑢). For example, after 𝑣9 and 𝑣11 are pruned,

the upper bounds of 3-clique compact numbers of 𝑣8 and 𝑣10 in

graph 𝐺 ′ are 𝜙
𝐺 ′

3
(𝑣8) = 𝜙

𝐺 ′

3
(𝑣10) = 0 < 𝜙

3

(𝑣8) = 𝜙
3

(𝑣10) = 1

2
. So

𝑣8 and 𝑣10 are pruned using condition (2).

Based on Lemma 1, we propose Prune algorithm shown in Algo-

rithm 3. 𝐺 is replicated to 𝐺 ′ for pruning (Line 1). Condition (1) is

used to remove invalid vertices in𝐺 ′ (Lines 2-3); after computing

the ℎ-clique core numbers for all vertices in𝐺 ′ (Line 4), condition
(2) is applied to further remove invalid vertices in 𝐺 ′ (Lines 5-7).
Finally, the LℎCDS candidates are updated from the intersection of

ℎ-clique stable groups and the unpruned vertex sets (Line 8).

Algorithm 3: The pruning algorithm

Input:𝐺 = (𝑉 , 𝐸 ) , S, 𝜙ℎ, 𝜙ℎ

Output: S
1 𝐺 ′ = (𝑉 (𝐺 ′ ), 𝐸 (𝐺 ′ ) ) ← 𝐺 ;

2 foreach (𝑢, 𝑣) ∈ 𝐸 do
3 if 𝜙ℎ (𝑣) < 𝜙

ℎ
(𝑢 ) then remove 𝑣 from𝐺 ′ ;

4 foreach 𝑢 ∈ 𝑉 (𝐺 ′ ) do compute 𝑐𝑜𝑟𝑒𝐺 ′ (𝑢,𝜓ℎ ) ;
5 while there exists 𝑢 ∈ 𝑉 (𝐺 ′ ), 𝑐𝑜𝑟𝑒𝐺 ′ (𝑢,𝜓ℎ ) < 𝜙

ℎ
(𝑢 ) do

6 remove 𝑢 from𝐺 ′;

7 update ℎ-clique-core numbers of vertices adjacent to 𝑢;

8 foreach LℎCDS candidate 𝑆 ∈ S do 𝑆 ← 𝑆 ∩𝑉 (𝐺 ′ ) ;
9 return S;

4.4 LℎCDS Verification
Since candidate LℎCDSes are obtained approximately, we need to

confirm whether the candidates are LℎCDSes.
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Proposition 5. There are the following properties about an LℎCDS.
(1) any subgraph of an LℎCDS cannot be denser than itself;
(2) An LℎCDS itself is compact, and any supergraph of an LℎCDS

cannot be more compact than itself.

Proof. (2) of Proposition 5 can be directly obtained from the

definition of LℎCDS. We prove (1) by contradiction. Suppose that

there is a subgraph 𝐺 [𝑆 ′] in an LℎCDS 𝐺 [𝑆], 𝑆 ′ ⊂ 𝑆 , such that

𝑑𝜓ℎ
(𝐺 [𝑆 ′]) > 𝑑𝜓ℎ

(𝐺 [𝑆]). By removal of the set 𝑈 = 𝑆\𝑆 ′from
𝐺 [𝑆], we remove |Ψℎ (𝐺 [𝑆]) | − |Ψℎ (𝐺 [𝑆 ′]) | ℎ-cliques. Note that

|Ψℎ (𝐺 [𝑆]) | − |Ψℎ (𝐺 [𝑆 ′]) | = 𝑑𝜓ℎ
(𝐺 [𝑆]) |𝑆 | − 𝑑𝜓ℎ

(𝐺 [𝑆 ′]) |𝑆 ′ | <

𝑑𝜓ℎ
(𝐺 [𝑆]) ( |𝑆 | − |𝑆 ′ |) = 𝑑𝜓ℎ

(𝐺 [𝑆]) |𝑈 |, which contradicts the fact

that 𝐺 [𝑆] is an LℎCDS, i.e. ℎ-clique 𝑑𝜓ℎ
(𝐺 [𝑆])-compact. □

We need to verify: 1) whether a candidate LℎCDS 𝐺 [𝑆] is self-
densest and 2) whether 𝐺 [𝑆] is a maximal ℎ-clique 𝑑𝜓ℎ

(𝐺 [𝑆])-
compact subgraph in𝐺 . We use IsDensest [33] algorithm to check

whether a candidate LℎCDS𝐺 [𝑆] is self-densest. In this section, we

focus on the verification of the second property, to verify whether

𝐺 [𝑆] is a connected component of maximal ℎ-clique 𝑑𝜓ℎ
(𝐺 [𝑆])-

compact subgraphs in 𝐺 . We design a basic verification algorithm,

and to reduce the scale of the flow network, we further propose a

fast algorithm. The correctness of both algorithms is proved.

4.4.1 Basic Verification Algorithm. Given an LℎCDS candidate

𝐺 [𝑆], we propose a innovative flow network to derive maximal ℎ-

clique 𝑑𝜓ℎ
(𝐺 [𝑆])-compact subgraph𝐺 ′ in𝐺 . If𝐺 [𝑆] is a connected

component of 𝐺 ′, 𝐺 [𝑆] is indeed maximal ℎ-clique 𝑑𝜓ℎ
(𝐺 [𝑆])-

compact subgraph and an LℎCDS in𝐺 ; otherwise,𝐺 [𝑆] is not an
LℎCDS. The flow network F (𝑉F, 𝐸F) is shown in Figure 5. The

vertex set of F is {𝑠} ∪𝑉 ∪ Ψℎ ∪ {𝑡}. The arc set of F is given as

follows. For each ℎ-clique𝜓
𝑗

ℎ
, we add ℎ incoming arcs of capacity 1

from the vertices which form𝜓
𝑗

ℎ
, and ℎ outgoing arcs of capacity

of ℎ − 1 to the same set of vertices. For each vertex 𝑣𝑖 ∈ 𝑉 , we add

an incoming arc of capacity 𝑑𝑒𝑔𝐺 (𝑣𝑖 ,𝜓ℎ) from the source vertex 𝑠 ,

and an outgoing arc of capacity 𝜌 ∗ ℎ to the sink vertex 𝑡 . Given

a parameter 𝜌 , we prove that the flow network in DeriveCompact
can be used to derive maximal ℎ-clique 𝜌-compact subgraphs in 𝐺

according to Theorem 4.
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…
…

𝒅𝒆𝒈𝑮(𝒗𝒊, 𝝍𝒉)

. . .

𝟏 𝟏
𝟏𝟏

Figure 5: The flow network of DeriveCompact(𝐺, 𝜌, ∅)

Theorem 4. If 𝐺 contains maximal ℎ-clique 𝜌-compact sub-
graphs, then the result returned by DeriveCompact (𝐺, 𝜌 − 1

|𝑉 |2 , ∅) is
the set of all maximal ℎ-clique 𝜌-compact subgraphs in 𝐺 .

Proof. Based on Proposition 4, two LℎCDSes are disjoint. We

use𝐺 [𝑆1] to represent the union of all maximal ℎ-clique 𝜌-compact

subgraphs in 𝐺 . 𝐺 [𝑆2] denotes the subgraph returned by Derive-

Compact (𝐺, 𝜌 − 1

|𝑉 |2 , ∅), which is the largest subgraph in 𝐺 with

maximum |Ψℎ (𝐺 [𝑆2]) | − 𝜌 × |𝑆2 | [13][9]. We prove that𝐺 [𝑆1] and
𝐺 [𝑆2] are the same. First, we prove that 𝐺 [𝑆2] is a subgraph of

𝐺 [𝑆1] by contradiction. Suppose a connected component 𝐺 [𝑆] of
𝐺 [𝑆2] is not ℎ-clique 𝜌-compact, then there exists a subset 𝑆 ′ ⊆ 𝑆

such that removing 𝑆 ′ from 𝑆 will result in removing less ℎ-cliques

than 𝜌×|𝑆 ′ |, then |Ψℎ (𝐺 [𝑆]) |−|Ψℎ (𝐺 [𝑆\𝑆 ′]) | < 𝜌×|𝑆 ′ | = 𝜌×(|𝑆 |−
|𝑆\𝑆 ′ |). We have |Ψℎ (𝐺 [𝑆]) | − 𝜌 × |𝑆 | < |Ψℎ (𝐺 [𝑆\𝑆 ′]) | − 𝜌 × |𝑆\𝑆 ′ |.
Therefore, replacing 𝐺 [𝑆] by its subgraph 𝐺 [𝑆\𝑆 ′] in 𝐺 [𝑆2] will
enlarge the value of |Ψℎ (𝐺 [𝑆2]) | − 𝜌 × |𝑆2 |, which contradicts the

condition that𝐺 [𝑆2] has the maximum |Ψℎ (𝐺 [𝑆2]) | − 𝜌 × |𝑆2 |. Sec-
ond, we prove that 𝐺 [𝑆1] is a subgraph of 𝐺 [𝑆2] by contradiction.

Suppose 𝐺 [𝑆1] is not a subgraph of 𝐺 [𝑆2], according to the result

before, we have 𝑆2 ⊂ 𝑆1. There exists a subset 𝑆 ≠ ∅ and 𝑆 = 𝑆1\𝑆2.
Removing 𝑆 from 𝐺 [𝑆1] will result in removing at least 𝜌 × |𝑆 | ℎ-
cliques, then |Ψℎ (𝐺 [𝑆1]) | − |Ψℎ (𝐺 [𝑆2]) | ≥ 𝜌× |𝑆 | = 𝜌× (|𝑆1 | − |𝑆2 |).
We have |Ψℎ (𝐺 [𝑆1]) | − 𝜌 × |𝑆1 | ≥ |Ψℎ (𝐺 [𝑆2]) | − 𝜌 × |𝑆2 |, so enlarg-
ing𝐺 [𝑆2] to𝐺 [𝑆1] will not decrease the value of |Ψℎ (𝐺 [𝑆2]) | − 𝜌 ×
|𝑆2 |, which contradicts the condition that 𝐺 [𝑆2] has the maximum

|Ψℎ (𝐺 [𝑆2]) | − 𝜌 × |𝑆2 |. Therefore, the theorem is proved. □

Algorithm 4: The basic LℎCDS verification algorithm

Input:𝐺 (𝑉 , 𝐸 ), 𝑆
Output: VerifyLℎCDS

1 𝜌 ← 𝑑𝜓ℎ
(𝐺 [𝑆 ] ) , VerifyLℎCDS← True;

2 𝐺 ′ ← DeriveCompact (𝐺, 𝜌 − 1

|𝑉 |2 , ∅);
3 return𝐺 [𝑆 ] is a connected component in𝐺 ′;

4 Procedure DeriveCompact(𝐺, 𝜌, 𝑃)
5 𝑐𝑛𝑡 ← 0; Ψℎ ← all the instances of ℎ-clique𝜓ℎ in𝐺 ;

6 𝑉F ← {𝑠 } ∪𝑉 ∪ Ψℎ ∪ 𝑃 ∪ {𝑡 };
7 foreach𝜓ℎ ∈ Ψℎ do
8 foreach 𝑣 ∈ 𝜓ℎ do
9 add an edge𝜓ℎ → 𝑣 with capacity ℎ − 1;

10 add an edge 𝑣 → 𝜓ℎ with capacity 1;

11 foreach𝜓ℎ ∈ 𝑃 do
12 𝑐𝑛𝑡 ← 𝑐𝑛𝑡 of𝜓ℎ ;

13 foreach 𝑣 ∈ 𝜓ℎ and 𝑣 ∈ 𝐺 do
14 add an edge𝜓ℎ → 𝑣 with capacity ℎ − 1;

15 add an edge 𝑣 → 𝜓ℎ with capacity 1 + ℎ−𝑐𝑛𝑡
𝑐𝑛𝑡

;

16 𝑑𝑒𝑔𝐺 (𝑣,𝜓ℎ ) ← 𝑑𝑒𝑔𝐺 (𝑣,𝜓ℎ ) + 1 + ℎ−𝑐𝑛𝑡
𝑐𝑛𝑡

;

17 foreach 𝑣 ∈ 𝑉 do
18 add an edge 𝑣 → 𝑡 with capacity 𝜌 ∗ ℎ;
19 add an edge 𝑠 → 𝑣 with capacity 𝑑𝑒𝑔𝐺 (𝑣,𝜓ℎ ) ;
20 Compute the minimum 𝑠 − 𝑡 cut (S, T) from the flow network

F(𝑉F, 𝐸F ) ;
21 return𝐺 [S \ 𝑠 ];

In Algorithm 4, we first derive all connected components of the

ℎ-clique 𝑑𝜓ℎ
(𝐺 [𝑆])-compact subgraph 𝐺 ′ in 𝐺 by DeriveCompact

(Line 2). If 𝐺 [𝑆] is a connected component of 𝐺 ′, the algorithm

return True (Line 3). In DeriveCompact, all the instances ofℎ-clique
is collected (Line 5). To build a flow network F (𝑉F, 𝐸F), a vertex
set 𝑉F is created, and vertices in 𝑉F are linked by directed edges

with different capacities (Lines 6-19). Then, the minimum 𝑠 − 𝑡 cut
(S,T) is computed (Line 20).

4.4.2 Fast Verification Algorithm. Although the basic verification

algorithm can successfully verify whether a given subset is LℎCDS,
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the scale of the flow network in algorithm 4 is large, and the running

time is long in large-scale graphs. We prove that the verification

can be done by verifying only the subgraph 𝐺 [𝑆] and the vertices

around the subgraph 𝐺 [𝑆], which is denoted by 𝐺 [𝑇 ]. Since 𝐺 [𝑇 ]
is much smaller than𝐺 , checking the minimum cut in𝐺 [𝑇 ] is much

more efficient. Considering the complexity of the overlap of cliques,

we propose a fast verification algorithm by constructing a smaller

flow network based on 𝐺 [𝑇 ]. Based on the fact that only the ℎ-

cliques at the boundary of 𝐺 [𝑇 ] affect ℎ-clique compact numbers

in 𝐺 [𝑇 ] compared to the ℎ-clique compact numbers in 𝐺 , we use

a set 𝑃 to record these ℎ-cliques. For each 𝜓
𝑃𝑟
ℎ
∈ 𝑃 , the number

of vertices that contained both in𝜓
𝑃𝑟
ℎ

and 𝐺 [𝑇 ] is 𝑐𝑛𝑡𝑃𝑟 . The flow
network F (𝑉F, 𝐸F) is shown in Figure 6. The vertex set of F is

{𝑠} ∪𝑉 ∪ Ψℎ ∪ 𝑃 ∪ {𝑡}. We add the boundary ℎ-clique set 𝑃 into

𝑉F to ensure that the results of solving the flow network of 𝐺 [𝑇 ]
are precisely consistent with that of 𝐺 . The arc set of F is given as

follows. The arcs for vertices and ℎ-cliques in𝐺 [𝑇 ] are the same as

the former flow network. For each𝜓
𝑃𝑟
ℎ
∈ 𝑃 , we add 𝑐𝑛𝑡𝑃𝑟 incoming

arcs of capacity 1 + ℎ−𝑐𝑛𝑡𝑃𝑟
𝑐𝑛𝑡𝑃𝑟

from the vertices that both in𝜓
𝑃𝑟
ℎ

and

𝐺 [𝑇 ], and 𝑐𝑛𝑡𝑃𝑟 outgoing arcs of capacity of ℎ − 1 to the same set

of vertices.

𝒗𝒏

𝒗𝒊

𝒗𝟏

𝒔 𝒕

𝝍𝒉
𝟏 𝝍𝒉

|𝚿𝑮|

…
…

. . .

𝟏 𝟏
𝟏𝟏

𝝍𝒉
𝑷𝟏 𝝍

𝒉

𝑷|𝑷|. . .𝟏 +
𝒉 − 𝒄𝒏𝒕𝑷𝟏
𝒄𝒏𝒕𝑷𝟏

𝟏 +
𝒉 − 𝒄𝒏𝒕𝑷|𝑷|
𝒄𝒏𝒕𝑷|𝑷|

Figure 6: The flow network of DeriveCompact(𝐺, 𝜌, 𝑃)

In Algorithm 5, the ℎ-clique density of 𝐺 [𝑆] is assigned to 𝜌

(Line 1). Then, a breadth-first search is performed. 𝑈 is used to

store the vertices to be traversed (Line 4). The first vertex 𝑣 from𝑈

is popped out (Line 6), and all ℎ-cliques containing 𝑣 are iterated

(Lines 7-25). For each𝜓ℎ that not in𝑊 , if any vertex𝑤 in𝜓ℎ that

𝜙ℎ (𝑤) < 𝜌 , 𝜓ℎ will not affect the ℎ-clique compact number of 𝑤

(Lines 9-13); if any vertex 𝑤 is in any outputted LℎCDS, False is

assigned to VerifyLℎCDS (Lines 17-18); the number of vertices in

𝜓ℎ that 𝜙
ℎ
(𝑤) ≤ 𝜌 is recorded and𝜓ℎ is added into 𝑃 (Lines 19-25).

All neighbors of 𝑣 are iterated (Lines 26-30). For each neighbor𝑤

that not in 𝑇 , if 𝜙
ℎ
(𝑤) > 𝜌 , False is assigned toVerifyLℎCDS (Line

28). If 𝜙
ℎ
(𝑤) ≤ 𝜌 < 𝜙ℎ (𝑤), 𝑤 will be added into 𝑈 and 𝑇 (Line

30). If VerifyLℎCDS is False, a subgraph 𝐺 [𝑇 ] induced by 𝑇 and

peripheralℎ-cliques in 𝑃 are used to compute allℎ-clique 𝜌-compact

subgraphs in 𝐺 [𝑇 ] via min-cut (Line 32). Finally, True is returned

if 𝐺 [𝑆] is maximal ℎ-clique 𝜌-compact; otherwise, the algorithm

returns False (Line 33). The flow network here is much smaller.

Theorem 5. Given a graph 𝐺 and a self-densest subgraph 𝐺 [𝑆],
𝐺 [𝑆] is an LℎCDS of 𝐺 if and only if the fast LℎCDS verification
algorithm returns True.

Proof. On the one hand, if 𝐺 [𝑆] is an LℎCDS of 𝐺 , 𝐺 [𝑆] is
still an LℎCDS in 𝐺 [𝑇 ], because only the ℎ-cliques in 𝑃 might

increase the ℎ-clique compact numbers in 𝐺 [𝑇 ] compared to the

ℎ-clique compact numbers in 𝐺 . Otherwise, there exists a vertex 𝑣

Algorithm 5: The fast LℎCDS verification algorithm

Input:𝐺 = (𝑉 , 𝐸 ) , 𝑆,Ψℎ (𝐺 ), 𝜙ℎ, 𝜙ℎ
Output: VerifyLℎCDS

1 𝜌 ← 𝑑𝜓ℎ
(𝐺 [𝑆 ] ) , VerifyLℎCDS← True, Valid← True;

2 𝑈 ← an empty queue, 𝑃 ← ∅,𝑇 ← ∅,𝑊 ← ∅, 𝑐𝑛𝑡 ← 0;

3 foreach 𝑢 ∈ 𝑆 do
4 if 𝑢 ∉ 𝑇 then push 𝑢 to𝑈 , insert 𝑢 into𝑇 ;

5 while𝑈 is not empty do
6 𝑣 ← pop out the front vertex in𝑈 ;

7 foreach𝜓ℎ ∈ Ψℎ (𝐺 ) where 𝑣 ∈ 𝜓ℎ do
8 Valid← True;

9 if 𝜓ℎ ∉𝑊 then
10 foreach 𝑤 ∈ 𝜓ℎ do
11 if 𝜙ℎ (𝑤 ) < 𝜌 then Valid← False ;

12 insert𝜓ℎ into𝑊 ;

13 else Valid← False ;

14 if Valid then
15 𝑐𝑛𝑡 ← 1;

16 foreach 𝑤 ∈ 𝜓ℎ and 𝑤 ≠ 𝑣 do
17 if 𝑤 ∉ 𝑇 and 𝑤 is in any LℎCDS then
18 VerifyLℎCDS← False;

19 if 𝜙
ℎ
(𝑤 ) ≤ 𝜌 then

20 if 𝑤 ∉ 𝑇 then
21 push 𝑤 to𝑈 , insert 𝑤 into𝑇 ;

22 𝑐𝑛𝑡 ← 𝑐𝑛𝑡 + 1;

23 if 𝑐𝑛𝑡 ≠ ℎ and𝜓ℎ ∉ 𝑃 then
24 insert𝜓ℎ and 𝑐𝑛𝑡 into 𝑃 ;

25 VerifyLℎCDS← False;

26 foreach (𝑣, 𝑤 ) ∈ 𝐸 do
27 if 𝑤 ∉ 𝑇 and 𝜙

ℎ
(𝑤 ) > 𝜌 then

28 VerifyLℎCDS← False;

29 else if 𝑤 ∉ 𝑇 and 𝜙ℎ (𝑤 ) > 𝜌 then
30 push 𝑤 to𝑈 , add 𝑤 into𝑇 ;

31 if VerifyLℎCDS then return True ;

32 𝐺 ′ ← DeriveCompact (𝐺 [𝑇 ], 𝜌 − 1

|𝑉 (𝐺 [𝑇 ]) |2 , 𝑃 );

33 return𝐺 [𝑆 ] is a connected component in𝐺 ′;

with ℎ-cliques in 𝑃 contained in the maximal ℎ-clique 𝑑𝜓ℎ
(𝐺 [𝑆])-

compact subgraph containing 𝐺 [𝑆], and we can construct a larger

ℎ-clique 𝑑𝜓ℎ
(𝐺 [𝑆])-compact subgraph in𝐺 by adding vertices with

𝜙
ℎ
(𝑤) > 𝑑𝜓ℎ

(𝐺 [𝑆]) connected to 𝑣 , which contradicts that𝐺 [𝑆] is
an LℎCDS. On the other hand, if 𝐺 [𝑆] is not an LℎCDS of 𝐺 , we

will find a larger ℎ-clique 𝑑𝜓ℎ
(𝐺 [𝑆])-compact subgraph containing

𝐺 [𝑆] in 𝐺 [𝑇 ]. Therefore, 𝐺 [𝑆] is not an LℎCDS in 𝐺 [𝑇 ], and the

algorithm returns False. Therefore, the algorithm return True only

when 𝐺 [𝑆] is an LℎCDS of 𝐺 . □

4.5 The LℎCDS Discovery Algorithm (IPPV)
Combining all the algorithms above, we derive the LℎCDS dis-

covery algorithm, called the IPPV algorithm shown in Algorithm

6. An empty stack 𝑠𝑡 is initialized, and 𝐺 ′ is assigned to 𝐺 (Line

1). The bounds of ℎ-clique compact numbers are initialized via

InitializeBd (Line 2). LℎCDS candidates are derived via ProposeLC
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and Prune (Line 4-5). Next, the LℎCDS candidates inS are reversely

pushed into 𝑠𝑡 , and the first LℎCDS candidate in 𝑠𝑡 , the one with the

highest 𝜙ℎ value, is popped out (Lines 6-7). The LℎCDS candidate is

verified by IsDensest (Line 8) and VerifyLℎCDS (line 9). If 𝐺 [𝑆]
is an LℎCDS, it will be outputted, and 𝑘 is decreased by 1 (Line 10).

If 𝐺 [𝑆] is not an LℎCDS but is self-densest, 𝑆 is updated as the top

LℎCDS candidate from 𝑠𝑡 (Line 12). Then, 𝐺 [𝑆] is assigned to 𝐺 ′

for the next iteration (Line 13). The above process is repeated until

top-𝑘 LℎCDSes are found (line 3) or the stack is empty (Line 11).

Our algorithms can also be extended to find all LℎCDSes.

Algorithm 6: The iterative propose-prune-and-verify al-

gorithm based on convex programming (IPPV)

Input:𝐺 = (𝑉 , 𝐸 ) , number of iterations𝑇 , a integer 𝑘

Output: top-𝑘 LℎCDS

1 𝑠𝑡 ← an empty stack;𝐺 ′ ← 𝐺 ;

2 𝜙ℎ, 𝜙ℎ
←InitializeBd(𝐺 ′, ℎ);

3 while 𝑘 > 0 do
4 S, 𝜙ℎ, 𝜙ℎ

← ProposeLC (𝐺 ′,𝑇 , 𝜙ℎ, 𝜙ℎ
) ;

5 S ← Prune (𝐺, S, 𝜙ℎ, 𝜙ℎ
);

6 foreach 𝑆 ∈ S reversely do push 𝑆 into 𝑠𝑡 ;

7 𝑆 ← pop out the top stable group from 𝑠𝑡 ;

8 if IsDensest (𝐺 [𝑆 ]) then
9 if VerifyLℎCDS (𝐺,𝑆,𝜙ℎ, 𝜙ℎ

) then
10 output𝐺 [𝑆 ] ; 𝑘 ← 𝑘 − 1 ;

11 if 𝑠𝑡 is empty then break ;

12 𝑆 ← pop out the top stable group from 𝑠𝑡 ;

13 𝐺 ′ ← 𝐺 [𝑆 ] ;

Complexity Analysis.We use 𝑇 to denote the number of iter-

ations that SEQ-kClist++ needs. Each iteration of SEQ-kClist++
costs 𝑂 (𝑛 + |Ψℎ |). We use 𝑁𝐶𝐿 to represent the total number of

LℎCDS candidates,𝑁𝐶𝐿 ≪ 𝑛. Each iteration of verify an LℎCDS can-

didate costs 𝑂 (𝑛 + |Ψℎ |). 𝑁𝐹𝑙𝑜𝑤 is the number of times IsDensest
and VerifyLℎCDS are called. The time complexity of max-flow com-

putation, which is𝑂 ((𝑛 + |Ψℎ |)2 · (𝑛 + |Ψℎ | ·ℎ)) for IsDensest and
VerifyLℎCDS when Dinic Algorithm is Applied. The time complex-

ity of IPPV is𝑂 ((𝑇+𝑁𝐶𝐿)·(𝑛+|Ψℎ |)+𝑁𝐹𝑙𝑜𝑤 ·(𝑛+|Ψℎ |)2 ·(𝑛+|Ψℎ |·ℎ)).
The memory complexity is (𝑛 + |Ψℎ |).

5 Lℎ𝑥PDS DISCOVERY
A pattern (also known as a motif) [15, 20, 37] is a small connected

subgraph that appears frequently in a larger graph, which can be

considered as a basic module. Figure 7 shows all kinds of patterns

with four vertices: 4𝑎-pattern,...,4𝑓 -pattern.

𝒃 𝟒 − 𝒑𝒂𝒕𝒉 𝒄  𝒄𝟑 − 𝒔𝒕𝒂𝒓 𝒅  𝟒 − 𝒍𝒐𝒐𝒑 𝒆  𝟐 − 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆 𝒇  𝟒 − 𝒄𝒍𝒊𝒒𝒖𝒆𝒂 𝟑 − 𝒔𝒕𝒂𝒓

Figure 7: An example of all patterns with four vertices

We further show that the algorithm for the locally ℎ-clique dens-

est subgraph discovery problem can be extended to solve the locally

general pattern densest subgraph discovery problem, which con-

tributes to a deeper understanding of the organizational principles

and functional modules within complex networks.

5.1 Densest Supermodular Set Decomposition
In this section, we discuss the reasonableness of extension from

ℎ-clique problem to general pattern problem. The convex program-

ming of ℎ-clique can be further generalized to the convex program-

ming of supermodular sets, so that the convex programming for the

general pattern densest subgraph problem and the corresponding

compact number can be derived. A function 𝑓 : 2
𝑉 → R+ is said to

be supermodular iff ∀𝐴, 𝐵 ⊆ 𝑉 , 𝑓 (𝐴) + 𝑓 (𝐵) ≤ 𝑓 (𝐴∪𝐵) + 𝑓 (𝐴∩𝐵).
Harb et al. [14] proposed the densest supermodular subset (DSS)

problem: given a normalized, nonnegative monotone supermod-

ular function 𝑓 : 2
𝑉 → R+, return 𝑆 ⊆ 𝑉 that maximizes

𝑓 (𝑆 )
|𝑆 | .

According to our observation, when 𝑓 (𝑆) = |𝐸 (𝑆) | and 𝑓 (𝑆) =
|Ψℎ (𝐺 [𝑆]) |, the DSS problem is the DS and CDS problem, respec-

tively. When 𝑓 (𝑆) represents the number of a particular pattern

in a graph, the problem is the densest problem of the proposed

pattern. The convex program[14] for the densest supermodular

set decomposition is CP(𝐺) := min

{∑
𝑢∈𝑉 𝑟 (𝑢)2

}
, subject to: 𝑟 ∈{

𝑥 ∈ R𝑉 |𝑥 ≥ 0, 𝑥 (𝑆) ≥ 𝑓 (𝑆) for all 𝑆 ⊆ 𝑉 , 𝑥 (𝑉 ) = 𝑓 (𝑉 )
}
.

With supermodularity, there is a property that each graph has a

unique nested diminishingly decomposition for each type of density.

The analysis of the generalization of CDS problem to DSS problem

has triggered our thinking on the solution of locally general pattern

densest problem.

5.2 Locally General Pattern Densest Subgraph
Problem

Given an undirected graph 𝐺 = (𝑉 , 𝐸), 𝜓ℎ𝑥 (𝑉𝜓ℎ𝑥
, 𝐸𝜓ℎ𝑥

) denotes
a particular kind of pattern 𝑥 with ℎ vertices and Ψℎ𝑥 (𝐺) is the
collection of the ℎ𝑥-patterns of 𝐺 . 𝑑𝜓ℎ𝑥

(𝐺) = |Ψℎ𝑥 (𝐺 ) ||𝑉 | denotes the

ℎ𝑥-pattern density of𝐺 . 𝑑𝑒𝑔𝐺 (𝑣,𝜓ℎ𝑥 ) is the ℎ𝑥-pattern degree of 𝑣 ,

i.e., the number of ℎ𝑥-patterns containing 𝑣 . A graph𝐺 = (𝑉 , 𝐸) is
ℎ𝑥-pattern 𝜌-compact if and only if 𝐺 is connected, and removing

any subset of vertices 𝑆 ⊆ 𝑉 will result in the removal of at least

𝜌× |𝑆 | ℎ𝑥-patterns in𝐺 . We can formally define a locally ℎ𝑥-pattern

densest subgraph as follows.

Definition 7 (Locallyℎ𝑥-pattern densest subgraph (Lℎ𝑥PDS)).
A subgraph𝐺 [𝑆] of𝐺 is a locally ℎ𝑥-pattern densest subgraph of𝐺 if
and only if there does not exist a supergraph 𝐺 [𝑆 ′] of 𝐺 [𝑆] (𝑆 ′ ⊋ 𝑆),
such that 𝐺 [𝑆 ′] is also ℎ𝑥-pattern 𝑑𝜓ℎ𝑥

(𝐺)-compact.

Similarly, we formulate the locally ℎ𝑥-pattern densest subgraph

problem as follows.

Definition 8 (Locally ℎ𝑥-pattern densest subgraph Problem
(Lℎ𝑥PDS Problem)). Given a graph𝐺 , an integer ℎ, a pattern 𝑥 and
an integer 𝑘 , the Lℎ𝑥PDS problem is to compute the top-𝑘 Lℎ𝑥PDSes
ranked by the ℎ𝑥-pattern density in 𝐺 .

Here, we utilize our "iterative propose-prune-and-verify" pipeline

to solve the Lℎ𝑥PDS problem. To apply the ℎ𝑥-pattern subgraph,

there are some differences between Algorithm 6 and Algorithm

7 in the algorithmic details. In Algorithm 7, we need to counting

ℎ𝑥-pattern graphs for Seq-kClist++ algorithm and derive candidate
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Algorithm 7: The IPPV algorithm for Lℎ𝑥PDS

Input:𝐺 = (𝑉 , 𝐸 ) , number of iterations𝑇 , a integer 𝑘

Output: top-𝑘 Lℎ𝑥PDS

1 𝑠𝑡 ← an empty stack;𝐺 ′ ← 𝐺 ;

2 𝜙ℎ𝑥 , 𝜙ℎ𝑥
← InitializeBd for ℎ𝑥-pattern (𝐺 ′, ℎ, 𝑥 );

3 while 𝑘 > 0 do
4 S, 𝜙ℎ𝑥 , 𝜙ℎ𝑥

← ProposeLC for ℎ𝑥-pattern (𝐺 ′,𝑇 , 𝜙ℎ𝑥 , 𝜙ℎ𝑥
);

5 S ← Prune for ℎ𝑥-pattern (𝐺, S, 𝜙ℎ, 𝜙ℎ
);

6 foreach 𝑆 ∈ S reversely do
7 push 𝑆 into 𝑠𝑡 ;

8 𝑆 ← pop out the top stable group from 𝑠𝑡 ;

9 if IsDensest (𝐺 [𝑆 ])for ℎ𝑥-pattern then
10 if VerifyLℎ𝑥PDS (𝐺, 𝑆,𝜙ℎ𝑥 , 𝜙ℎ𝑥

) then
11 output𝐺 [𝑆 ]; 𝑘 ← 𝑘 − 1;

12 if 𝑠𝑡 is empty then
13 break;

14 𝑆 ← pop out the top stable group from 𝑠𝑡 ;

15 𝐺 ′ ← 𝐺 [𝑆 ];

Lℎ𝑥PDS algorithm. In pruning part, the computation of ℎ𝑥-pattern

graph cores is different for diverse kinds of patterns. Unlikeℎ-clique,

there may be more than one ℎ𝑥-pattern on a graph with ℎ vertices.

In verification part, the methods for reducing the size of subgraph

to compute the min-cut need small adjustments for different pat-

terns. In general, the process of extending our algorithm to general

patterns is concise and clear.

6 EXPERIMENTS
6.1 Experimental Setup
The datasets we use are undirected real-world graphs [19, 29], in-

cluding social networks, biological networks, web graphs, and col-

laboration networks. All datasets are listed in Table 2.

Table 2: Datasets used in our experiments

Name Abbr. |𝑉 | |𝐸 | |Ψ3 | |Ψ5 |
soc-hamsterster HA 2,426 16,630 53,251 298,013

CA-GrQc GQ 5,242 14,484 48,260 2,215,500

fb-pages-politician PP 5,908 41,706 174,632 2,002,250

fb-pages-company PC 14,113 52,126 56,005 207,829

web-webbase-2001 WB 16,062 25,593 21,115 382,674

CA-CondMat CM 23,133 93,439 173,361 511,088

soc-epinions EP 26,588 100,120 159,700 521,106

Email-Enron EN 36,692 183,831 727,044 5,809,356

loc-gowalla GW 196,591 950,327 2,273,138 14,570,875

DBLP DB 317,080 1,049,866 2,224,385 262,663,639

Amazon AM 334,863 925,872 667,129 61,551

soc-youtube YT 495,957 1,936,748 2,443,886 5,306,643

soc-lastfm LF 1,191,805 4,519,330 3,946,207 10,404,656

soc-flixster FX 2,523,386 7,918,801 7,897,122 96,315,278

soc-wiki-talk WT 2,394,385 4,659,565 9,203,519 382,777,822

We compare the performances of the following algorithms:

IPPV : the top-𝑘 LℎCDS discovery algorithm proposed by us.

LTDS [31] : the top-𝑘 LTDS discovery algorithm based on the

maximum-flow, which solves the LℎCDS problem with ℎ = 3.

Greedy : the top-𝑘 CDS discovery algorithm based on KClist++

[33] using greedy approach. It has no guarantee on the locally

densest property.

All algorithms are implemented in C++ and compiled by g++

compiler at -O3 optimization level. All experiments are evaluated on

amachine with Intel(R) Xeon(R) CPU 3.20GHz processor and 128GB

memory, with Ubuntu operating system. Algorithms running for

more than 48 hours will be forcibly terminated.

6.2 Efficiency
In this section, we conduct experimental analysis on the efficiency

of algorithms and summarize the influence of different parameter

changes on the running time.

6.2.1 Efficiency: IPPV vs LTDS. Since LTDS is L3CDS, ℎ = 3. We

set 𝑘 = 5 to observe the running time of the two algorithms in

Table 3. We compare IPPV with LTDS on all datasets, and there

are significant efficiency improvements on all datasets. The main

bottleneck of LTDS is the time-consuming verification part, and the

reason is that the upper and lower bounds of LTDS are not as tight

as that of IPPV, so there will be more failures in the verification

part, which demonstrates the superiority of our propose-prune-

and-verify pipeline. The running time of our algorithm is closely

related to the size of the graph and the number of ℎ-cliques. A rise

in the number of ℎ-cliques can cause an increase in running time.

Table 3: Efficiency of IPPV and LTDS

Dataset IPPV LTDS Speedup

soc-hamsterster 7.50(s) 46.54 6.20×
CA-GrQc 0.38 18.97 49.92 ×
fb-pages-politician 32.32 436.30 13.50×
fb-pages-company 2.56 51.48 20.11×
web-webbase-2001 0.14 12.20 87.14×
CA-CondMat 21.63 541.63 25.04×
soc-epinions 82.54 558.91 6.77×
Email-Enron 1369.84 2253.14 1.64×
loc-gowalla 5095.63 68216.14 13.39×
DBLP 360.49 4888.93 13.56×
Amazon 1118.08 1308.53 1.17×
soc-youtube 9070.89 42821.99 4.72×
soc-lastfm 11223.13 ≥172, 800 ≥ 15.40 ×
soc-flixster 3018.62 ≥ 172, 800 ≥ 57.24 ×
soc-wiki-talk 57382.42 ≥ 172, 800 ≥ 3.011 ×

6.2.2 Efficiency improvement by fast verification algorithm. We use

VerifyLℎCDS(basic) to represent the IPPV algorithm with Algo-

rithm 4 and VerifyLℎCDS(fast) to represent the IPPV algorithm

with Algorithm 5. Their running times are compared in Figure 8.

The fast verification algorithm with a smaller flow network is much

faster than basic verification method. Especially as 𝑘 increases, the

efficiency gap between the two algorithms becomes more apparent.

We also compare the running time of the two verification algo-

rithms in the total running time in Figure 9, and the acceleration

effect of the fast algorithm is obvious. The results demonstrate the

importance and benefit of optimizing the verification algorithm.

6.2.3 the running time trends with 𝑘 . Parameter 𝑘 has a more pro-

nounced impact on the running time of the algorithm than ℎ. The

experiments in Figure 8 indicate a direct relationship, where an

increase in 𝑘 corresponds to a proportional increase in execution

time. This trend is consistently observed across different datasets,
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Figure 8: Running time of algorithms with different ℎ (= 3,4,5) and 𝑘 . Red is VerifyLℎCDS(basic), Green is VerifyLℎCDS(fast)
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Figure 9: Running time of each part of IPPV with ℎ = 3 and 𝑘 = 20

which strengthens the premise that 𝑘 is an important factor in

computational complexity. The running time of both algorithms

increases significantly for incremental values of 𝑘 . The only devi-

ation is observed in the Email-Enron dataset, where the running

time remain relatively static despite changes in 𝑘 , due to the fact

that the total number of LℎCDSes in this dataset is smaller than 𝑘 .

6.2.4 The running time trends withℎ. We tookℎ = 3, 4, 5 to compare

the impact ofℎ on the running time. The results are shown in Figure

8. When ℎ = 5, the running time is generally longer. The reason is

that when ℎ = 5, the number of 5-clique is larger, as shown in Table

2. On Amazon, the running time is shorter when ℎ = 5, because the

number of 5-cliques is smaller. The running time is proportional to

the number of ℎ-cliques with different ℎ.

(a) categories (b) 2-clique (c) 3-clique (d) 4-clique (e) 5-clique

Figure 10: LℎCDS case study on real network (the top-1 LℎCDS:
steelblue; the top-2 LℎCDS: orange vertices)

6.3 Comparison of Subgraphs
We visualize the result LℎCDSes with different ℎ. Figure 10 shows

a network of books about US politics which were sold by Ama-

zon [17]. The vertices represent different books, which fall into

neutral(green), liberal(blue), and conservative(red) categories. The

edges represent frequent co-purchasing of books by the same buy-

ers, which indicate “customers who bought this book also bought

the other books” feature on Amazon. The set of steelblue vertices

is the top-1 LℎCDS, and if exists, the set of orange vertices is the

top-2 LℎCDS of the ℎ-clique. As shown in Figure 10, LℎCDSes with

larger ℎ are closer to a clique. Besides, when ℎ is larger, LℎCDSes

can find multiple dense communities in different fields: L4CDSes

contain both liberal and conservative book communities, whereas

LDSes only contain liberal book community.
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Figure 11: Subgraph statistics of ℎ-density and size
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Next, we compare the LℎCDSes detected by our algorithm and

the ℎ-clique densest subgraphs found by the Greedy algorithm. We

select ℎ = 3, 5 on two datasets, respectively, and the results are

shown in Figure 11. First, the results of the two algorithms overlap

to a certain extent, among which the top-1 CDS is the same because

the first LℎCDS must be the ℎ-clique densest subgraph in the whole

graph. Second, there is a certain difference between the returned

subgraphs of the Greedy algorithm and IPPV because the returned

subgraphs of Greedy do not ensure the locally densest property.

Therefore, the Greedy algorithm can not solve the LℎCDS problem

well. The two algorithms totally overlap if and only if the top-𝑘

ℎ-clique densest subgraph belongs to different regions occasionally.

6.4 Clustering Coefficient of Different ℎ
Since near clique is an important criterion for evaluating dense

subgraphs, we evaluate how LℎCDSes of different ℎ are close to the

clique structure. In graph theory, clustering coefficient is a measure

of the degree to which vertices in a graph tend to cluster together,

which is a direct measure to the degree of near clique. For each

vertex𝑢 ∈ 𝑉 , which has 𝑘𝑢 neighbors𝑁𝑢 (|𝑁𝑢 | = 𝑘𝑢 ), the clustering

coefficient of 𝑢 is 𝐶𝑢 =
2 | {𝑒𝑣𝑤 :𝑣,𝑤∈𝑁𝑢 ,𝑒𝑣𝑤 ∈𝐸} |

𝑘𝑢 (𝑘𝑢−1) . We compare the

average 𝐶𝑢 of all the LℎCDSes of different ℎ in Table 4.

Table 4: Average Clustering coefficient of different ℎ values

Average Clustering coefficient

dataset

ℎ=2 ℎ=3 ℎ=5 ℎ=7 ℎ=9

fb-pages-company 0.582 0.852 0.895 0.915 0.930
soc-hamsterster 0.480 0.910 0.990 0.984 0.995

fb-pages-politician 0.583 0.683 0.776 0.798 0.835
CA-CondMat 0.567 0.977 0.992 0.992 0.991

soc-epinions 0.231 0.722 0.701 0.705 0.773
web-webbase-2001 0.831 0.884 0.989 0.992 0.979

CA-GrQc 0.533 0.975 0.982 0.985 OOM

According to the results shown in Table 4, when ℎ is larger, the

average 𝐶𝑢 is generally larger, showing LℎCDSes with larger ℎ are

closer to clique. In addition, there is a big difference between ℎ = 3

and ℎ = 2 (L2CDS is LDS), which shows that LDS is less dense than

other LℎCDS. Our algorithm is important for finding near-clique

subgraphs, which can not be replaced by LDS.
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Figure 12: Memory usage of algorithms

6.5 Memory Overheads
We compare the memory utilization for the IPPV and LTDS algo-

rithms across all datasets (ℎ = 3). Figure 12 illustrates a clear corre-

lation between memory usage and dataset size, with 𝑘 = 5. IPPV
algorithm strategically reduces the size of candidate subgraphs

through a pruning mechanism prior to evaluating self-compactness.

The verifying part often dominates memory consumption.

6.6 The number of iterations
To choose the optimal number of iterations𝑇 of SEQ-kClist++, we
set different𝑇 on the IPPV algorithm. We select𝑇 = 5, 10, 15, 20, 40,

60, 80, 100 respectively, as shown in Figure 13. The experiment on

eight datasets shows that the optimal performance is between 15

and 20 iterations. In our experiments, we choose 𝑇 = 20.
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Figure 13: The running time of four datasets with different𝑇

6.7 Case Study of Lℎ𝑥PDS
We utilize the same real dataset [17] to experimentally illustrate

the Lℎ𝑥PDS problem. For each pattern depicted in Figure 7, we

compute the results of L4𝑥PDS. In Figure 14, the set of steelblue

vertices is the top-1 Lℎ𝑥PDS, and if exists, the set of orange vertices

is the top-2 Lℎ𝑥PDS of the pattern ℎ𝑥 . It is evident that the L4𝑥PDS

corresponding to various patterns exhibit differences in terms of

the number of L4𝑥PDS, the number of vertices, and the position

of vertices. The L4𝑥PDSes of different patterns 4𝑥 correspond to

the respective solutions of different problems. To delve deeper into

graph analysis, tasks such as community clustering can be extended

to explore the L4𝑥PDS subgraph.

(a) 3-star (b) 4-path (c) c3-star (d) 4-loop (e) 2-triangle (f) 4-clique

Figure 14: L4𝑥PDS case study on real network (the top-1
Lℎ𝑥PDS: steelblue; the top-2 Lℎ𝑥PDS: orange vertices)

7 CONCLUSION
In this paper, we study how to discover locally ℎ-clique densest

subgraphs in a graph 𝐺 ,i.e., the LℎCDS problem. We present an

iterative propose-prune-and-verify pipeline for top-𝑘 LℎCDS de-

tection. The ℎ-clique compact number and graph decomposition

method to propose LℎCDS candidates more efficiently is proposed.

A new optimized verification algorithm is designed, and its correct-

ness is proved. The extension of our algorithm to solve the locally

general pattern densest subgraph problem is feasible and promising.

Extensive experiments on real datasets show the high efficiency

and scalability of our proposed algorithm. In the future, we will

continue to optimize the algorithm of LℎCDS problem and further

explore the Lℎ𝑥PDS problem.
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