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Abstract. Counting and tracking multiple targets by binary proximity
sensors (BPS) is known difficult because a BPS in “on” state cannot dis-
tinguish how many targets are presenting in its sensing range. Existing
approaches investigated target counting by utilizing joint readings of a
network of BPSs, called a snapshot [2,11]. A recent work [14] presented a
snapshot-based target counting lower bound. But counting by individual
snapshot has not fully utilized the information between the sequential
readings of BPSs. This paper exploits the spatial and temporal depen-
dency introduced by a sequence of snapshots to improve the counting
bounds and resolution. In particular, a dynamic counting scheme which
considers the dependency among the snapshots were developed. It leads
to a dynamic lower bound and a dynamic upper bound respectively.
Based on them, an improved precisely counting condition was presented.
Simulations were conducted to verify the improved counting limits, which
showed the improvements than the snapshot-based methods.

1 Introduction

Binary proximity sensors (BPS) is an extracted model for a large category of
sensors, such as infrared, ultrasound, microwave, and magnetic sensors. It has
an extremely simple sensing model, which outputs a single bit “1” when one or
more mobile targets are in its sensing range and “0” otherwise. A BPS sensor
cannot distinguish the targets, decides how many distinct targets are presenting
in its range, nor judges the targets’ moving directions.

Despite of the very limited information provided by one BPS, prior works [11][9]
showed the feasibility to track a single target using a collaborative network ofBPSs.
In [9], the authors showed that if only one target was presenting, the worst case
location error is bounded byΩ( 1

ρRd−1 ), where ρ is the sensor density,R is the sens-
ing range, and d is the dimension of the space. However, significant difficulties are
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encountered for tracking multiple targets because each “on” sensor cannot distin-
guish howmany targets are presenting in its sensing range.Therefore, a fundamen-
tal challenge is to count the number of targets precisely.

Existing approach investigated the target counting problem by exploiting in-
dividual snapshot captured from a network of BPS. We call such case static
counting. In [11], Singh et al. presented that accurate target counting could be
achieved by a snapshot if the targets are separated by at least 4R, where R is
a sensor’s sensing radius. Recent work in [14] presented a lower bound of static
counting, which stated that the number of presenting targets equals to the min-
imum clique partition of the UDG formed by the “on” sensors. However, static
counting has not fully utilized the information provided by the sensors’ reading
sequences. In this paper, we show that the upper and lower bounds on target
counting can be further improved by exploiting the temporal, spatial dependen-
cies between the sequential snapshots.

Different from the existing approaches, we take the sequential events reported
from sensors during a period as the problem’s input. In this case, a dynamic
counting technique to infer the lower bound of the target number was designed.
We showed theoretically and numerically that the lower bound given by dynami-
cally counting can effectively improve the existing lower bound in static counting.
For estimating the upper bound of the number of targets, we firstly propose a
packing-based upper bound for snapshot cases under an assumption of minimum
pair-wise separation distance between targets. Later on, a dynamic counting al-
gorithm is designed to improve the static upper bound, whose effectiveness is
also verified by simulations.

Furthermore, the condition for precisely target counting is discussed in our
work. In [12], J. Singh et al. proved that at least 4R pairwise separation among
targets was required for precisely static counting. In this work, by the upper
bound and lower bound obtained from dynamic counting, a new separation dis-
tance for precise counting was derived, which reduced the 4R separation re-
quirement by approximately R

4 . It shows that dynamic counting can relax the
pair-wise separation condition for precisely target counting.

The rest of the paper is organized as follows. Section 2 presents the problem
model and the most related works. Section 3 and Section 4 present the lower
bound and the upper bound of the target number by dynamic counting, re-
spectively. In Section 5, the condition for precise target counting is discussed.
Section 6 provides simulation results which correspond to our algorithm pro-
posed in Section 3 and Section 4. The paper is concluded in Section 7 with
discussion of future directions.

2 Problem Model and Background

2.1 Preliminaries

We consider N binary sensors which are deployed in 2-D area of interest (AOI).
Each sensor detects objects within its sensing radius R, and generates one bit
of information: “1” for presence of targets and “0” for absence. We assume
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that the binary sensing is ideal, noiseless, and provides no other information
about the location, speed, or direction information of the targets. All sensors
are assumed timely synchronized and their locations are assumed calibrated in
an initialization process [8]. We also assume that the AOI is fully covered by
the sensing areas of BPSs. Sensors work collaboratively to track the targets.
Since the targets move continuously in the AOI, the binary readings of a BPS
are efficiently encoded by the time intervals between the BPS’s “on” and “off”
events. Each BPS reports “1” or “0” when a corresponding transition between 1
and 0 happens, which is enough for a centralized processor to interpolate the real-
time states of all sensors at any snapshot. We assume that all “on”, “off” events
are successively collected via some supporting routing and MAC protocols. At
the server side, it receives the sequential events reported from the BPS sensors
and reconstructs the sensing snapshots at each event. Each snapshot is a length-
M binary vector St ∈ [0, 1]M at time t. Although the presented techniques are
applicable for sensors with non-ideal sensing models, such as non-regular sensible
region, we focus our analysis on the disk-shape ideal sensing model.

Patch-basedLocationDescription: Traditionally, the underlying locations of tar-
gets are described by “patches” formed by the sensing regions of BPSs. M BPSs
can partition the AOI to at most L ≤ M2−M +2 patches [10,9]. Each patch indi-
cates a region which is covered by the same set of sensors and each patch is coded
by a length-M vector based on the coverage situations ofM sensors. For example,
in a network of four sensors, a patch with code “1100” means the patch is covered
by the first two sensors, but is not covered by the other two sensors.

Arc-based Location Description: By taking the event time into consideration,
targets’ locations can be further narrowed down to arcs. When a sensor reports
a state transition event, the target that triggers this event must be presenting
on the edge of this sensor’s sensing region. By jointly considering the states of
surrounding sensors, we can infer the target’s location to be on an arc between
two patches whose state change. Each arc can be uniquely encoded by the codes
of two neighboring patches. E.g., the arc between “100” and “110” can be coded
by “100110”. Fig.1 shows an example trace of a target represented by patch
sequence and arc-time sequence respectively. The arc representation can specify
the location of the target at a given time. We will show in following sections that

Fig. 1. Location traces of a target rep-
resented by patch index and time-arc
index respectively

 

 

 

Fig. 2. A snapshot, where feasible ar-
eas are partitioned into three isolated
islands
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Table 1. Notation List

Notation Meaning

R Radius of each sensor

M Number of sensors in the area of interest (AOI)

N Number of snapshots given in input

v Total number of isolated feasible islands

Li The ith isolated feasible island

P (s) Coverage area of sensor s

fa Feasible Crossing Arc (at a certain time ta)

T = {t1, · · · , tk} Set of time corresponding to given snapshots

U All t ∈ T whose snapshot triggers on a previous “off” sensor

D All t ∈ T whose snapshot triggers off a previous “on” sensor

Stk Snapshot at time tk
Gk Patch graph at time tk

this property of arc representation can help to improve the counting resolution
by dynamic counting.

Problem specification: Under above system model, we consider multiple target
counting problem by sequential snapshots. Each snapshot at t is the captured
states of M BPSs when some sensor in the region reports a change. That is,
a snapshot at time t ∈ T := {t|St �= St−ε for sufficiently small ε > 0}. The
problem input is a sequence of N snapshots {St1 ,St2 , · · · ,StN }. Without loss of
generality, we assume t1 < t2 < · · · < tN . We also assume the number of targets
participating in the AOI will not change during t1 to tN and each target’s moving
speed is upper bounded by Vmax. The problem output is a lower bound and an
upper bound of the number of targets.

Notation list: Notations used in our paper are listed in Table 1.

2.2 Background

Target counting problem by one snapshot has been investigated intensively in the
literature. A notable concept presented in [11,14] is the feasible area. Given a snap-
shot, the feasible areawhere targetsmaypresent canbe determinedbyF= P (A)−
P (A)∩P (E), where P (A) is the coverage area of the “on” sensors and P (E) is the
coverage area of the “off” sensors. An example of the feasible area is shown in Fig.2,
inwhich the sensing regions of “on” sensors are inwhite and sensing regions of “off”
sensors are in grey. In the figure, the feasible area is partitioned into three feasible
islands L1, L2, L3, which are called isolated feasible islands.

Existing Lower Bounds. For point model of targets, the target number in
the feasible area have no upper bound. Estimating the lower bound of target
number is the foundation of target counting.

• In [11], a lower bound is given by Singh et al. for counting targets moving
in one dimensional space, i.e., on a line. In their method, if “on” sensors can
be partitioned into at most X positively independent sets, where the positively
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Fig. 3. Examples to illustrate and compare different lower bounds for target counting

independent sensors are “on” sensors whose sensing regions do not overlap, or
separated by at least one “off” sensors, Theorem 4 in [11] stated that the number
of targets is not less than the cardinarity of X , i.e., |X |.

• A recent work in [14] investigated the target number lower bound in 2-D
space. They showed that the lower bound given in [11] was conservative in 2-D
space. A unit disc graph (UDG) model was proposed to model the structure of
the feasible area, based on which an improved lower bound was given. It equals

to
v∑

i=1

ci, where ci is the minimum number of cliques partitioning the UDG of

the ith feasible isolated island.
• In this paper, we show that the lower bound in [14] can be further improved

if the temporal and spatial dependences between snapshots are taken into consid-
eration. The basic intuition is shown in Fig.3, which compares the lower bounds
mentioned above. In Fig.3a), we can see the four “on” sensors are in one posi-
tively dependent set, so that the lower bound given by [11] will be one. But the
lower bound given by [14] will be two because the UDG formed by the “on” sen-
sors has at least two cliques. So the lower bound in [14] ismore accurate in 2-D space
than that in [11], but it can be further improved. As illustrated in Fig.3(b), at t2,
from the UDG structure, the lower bound given by [14] will be one. But by consid-
ering the event sequence from t0 to t2 and the limitedmoving speed of the target, we
can judge that the target triggers the sensorA at t1 cannot trigger the sensorB at
t2. Consequently, the lower bound of the target number should be two in dynamic
counting.

Other Related Works. Most other related works focused on the multiple tar-
get tracking algorithms. To deal with the difficulty of multiple targets, Busnel et
al. [2][1] investigated the trajectory identification properties. They converted the
BPS network into a state graph and presented trajectory identifiable and uniden-
tifiable properties on the state graph. In other works, the number of targets were
either assumed known or online estimated by the trajectory disaggregation al-
gorithms. FindingHuMo [4] proposed Hidden Markov Model (HMM) to track a
known number of targets by a BPS network. MiningTraMo [17] proposed mul-
tiple pairs shortest path algorithm based on walking speed variance to infer the
most possible trajectories or targets. In [19], compressive sensing based method
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was proposed to count and track the multiple targets, when the targets were
known to be sparse, i.e., well separated. In [6], a hybrid multiple target tracking
scheme was proposed by He et al., which conducted coarse-scale tracking by bi-
nary proximate sensors to narrow down search area, and used high-end sensors
for fine-grained tracking. In [3], Cao et al. presented collaborative scheme for
tracking groups of targets using BMSs. A distributed PIR-based people num-
ber counting system in office environment was developed in [16]. Algorithms
and systems for indoor locating using ultrasound systems were investigated in
[18][20]. Without going into details of target locating and tracking, we focus on
the basic properties of multiple target counting by the sequential snapshots of a
BPS network.

3 Lower Bound of Target Number by Dynamic Counting

3.1 Preliminary

Wefirstly investigate lower bound of target number by utilizing a sequence of snap-
shots capturedbyBPSs.For convenience,wedivide the time setT ={t1, t2, · · · , tN}
corresponding to the given snapshots into two sets U and D, namely up-set and
down-set. tk ∈ U, k ∈ N if and only if an “off” sensor in Stk−1

is triggered on in Stk ,
and tk ∈ D, k ∈ N if and only if an “on” sensor in Stk−1

is triggered off in Stk . Next,
we define feasible crossing arc to indicate the possible locations of the targets that
trigger a state transition event.

Definition 1 (Feasible Crossing Arc (FCA)). When a sensor’s state change
is detected, the feasible crossing arc indicates the arc segments where the targets
are traversing to trigger the event without violating the states of other sensors.

Based on FCA, we propose Theorem 1 to specify the necessary time-space
restriction for two events being triggered by the same target. The theorem is
based on the fact that a target’s moving speed is limited. Therefore, only if the
distance between the FCAs of these two events are not beyond the moving scope
of the target, can the two events be triggered by the same target.

Theorem 1 (Time-Space Restriction). If a sensor A is triggered “on” by
one target at time tA and the FCA is fA; another sensor B is triggered on by the
same target at time tB ≥ tA with FCA fB, then ‖fA − fB‖2 ≤ (tB − tA)Vmax,
where Vmax is the maximum moving speed of the target.

3.2 Dynamic Counting Using the Time-space Restriction

The time-space restriction could improve the lower bound of the number of
targets. An example to show the basic idea is illustrated in Fig.4. It shows six
snapshots captured from a BPS network. The ground truth happened during
this period is that: three targets, in terms of “red”, “green”, and “orange” are
presented as shown in Snapshot 1. At Snapshot 2, the red target moves outside
a little bit, and then turns back quickly as shown in Snapshot 3. Then in a very
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Fig. 4. Improvement by time-space restriction

close snapshot, the orange target moves outside a little bit as shown in Snapshot
4, and then turns back quickly as shown in Snapshot 5. Then in another close
by snapshot, the green target moves outside.

By static counting method, the UDGs besides each scenario show the static
counting result. The number of MCP for UDG from snapshot 1 to snapshot 6 are
one, two, one, two, one, two respectively. Therefore, the estimated lower bound
of the number of targets during this period, given by static counting is two.

However, since the procedure finishes in ephemeral time, by considering the
spatial and temporal dependency between the snapshots we know that the sen-
sors which are triggered on in Snapshot 2, 4 and 6 must be triggered by totally
different targets due to the limited speed of the targets. Therefore, in Snapshot
6, we could deduce that a disparate target other than the two targets triggering
events at Snapshot 2 and 4 must be presenting. Therefore, the lower bound of
the target number is three by utilizing time-space restriction.

Based on the idea above, we develop a dynamic counting method to estimate
the target lower bound more precisely. To initialize the algorithm, the beginning
patch graph G0 is built based on the UDG model in static counting. Count
is defined as the estimated lower bound of the target number, which is set to
MCP(G0) initially. After that, a loop runs from the first snapshot to the last
snapshot in order to construct patch graphs dynamically. More specifically, for a
snapshot at time tk ∈ U , assume the sensor l is triggered from “off” to “on”. In
this case, we will firstly construct all edges between sensor l and other intersected
“on” sensors whose common intersection is not fully covered by the regions of
the “off” sensors. After that, we examine all these edges: if an edge violates the
time-space restriction, the edge will be deleted.

For a snapshot at time tk ∈ D, we need to delete the vertex of the sensor from
the UDG, which is just turned from “on” to “off” in the graph, and delete all
its corresponding edges. In addition, it is a necessity to delete the edges whose
corresponding intersection area is fully covered by this newly “off” sensor.

After finishing each loop, we calculate the MCP of the new patch graph. count
would be updated if this MCP is larger than the previous count. The algorithm
ends after looking at all snapshots in time sequential order. The whole procedure
is named as dynamic counting of targets, and we develop Algorithm 1 for this
method. The dynamic counting algorithm leads to Theorem 2.
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Algorithm 1. Lower Bound Dynamic Counting Algorithm

Input: Set T = {t1, t2, · · · , tN} = U ∪D (up-set and down-set);
Stk ,Atk ,Etk ,∀0 ≤ k ≤ N ; Patch graph G0 of time t0;
Output: Lower bound of the number of targets: count;

Initialize count ←MCP(G0);1

for k ← 1 to N do2

if tk ∈ U then3

Define l to be the sensor which is “off” in Stk−1 but “on” in Stk ; Fl to4

be the feasible crossing arc of sensor l;
Define Gk = Gk−1 ∪ {l};5

for i ← 1 to M ,i �= l do6

Define Fi to be the feasible crossing arc of sensor i;7

if Di,l ≤ 0 AND sensor i and sensor l have intersecting region and8

the intersected region is not fully convered by the regions of the “off”
sensors then

add an edge in Gk between i and l9

if tk ∈ D then
Define l to be the sensor which is “on” in Stk−1 but “off” in Stk ;10

Define Gk = Gk−1/{l} by deleting vertex l and its corresponding edges;11

if sensor i, j, l have intersecting region pairwise and the intersected12

region of sensor i and j is fully convered sensor l then
delete the edge in Gk between i and j13

count ← max{count, MCP(Gk)};14

return count;15

Theorem 2 (Lower Bound of the Target Number). Let NL be the real
number of targets that matches the sequential snapshots of sensors. Then the
return value ‘count’ of Algorithm 1 must not be larger than NL, i.e., NL ≥ count.
Proof. Based on the discussion of Algorithm 1, it is clear that Gk constitutes
the snapshot at time tk. In order to prove the theorem, we suffice to show that
N ≥ MCP(Gk) for each k since count is the maximum of all MCP(Gk).

Let us assume the contrary that N < MCP(Gk) for a certain k. As a result,
we could re-partition all “on” sensors of the UDG at time tk into MCP(Gk)− 1
groups such that each group of sensors has a common intersection while each pair
of sensors does not violate the time-space restriction. This partition is equivalent
to a clique partition of Gk with MCP(Gk)− 1 cliques, but this contradicts with
the fact that MCP(Gk) is a minimum clique partition of Gk.

Our algorithm also has a reasonable time complexity. By [5], MCP of a patch
graph could be calculated by a polynomial time approximation scheme (PTAS)

with (1 + ε)-approximation and time complexity O(MO(1/ε2)) where M is the
number of sensors in the area of interest (AOI). In addition, line 2 to line 13 in the
algorithm could be done in O(M) time in each cycle. Therefore, Algorithm 1 is

also a PTAS with (1+ε)-approximation and has time complexity O(N ·MO(1/ε2))
where N is the number of snapshots.
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Fig. 5. Example of calculating the up-
per bound of target number

island1 island2 island3

Fig. 6. Example of minimum separa-
tion distance

4 Upper Bound by Dynamic Counting

In real applications, the physical targets, such as humans, animals, vehicles,
are generally not arbitrarily close to each other. In this section, we assume a
minimum separation distance r > 0 between each pair of targets.

4.1 Static Counting

Based on the assumption of minimum separation distance, we can estimate the
upper bound of target number by modeling it as a packing problem, which is a
classical geometric optimization problem in mathematics that attempts to pack
objects together into containers. The goal is to pack the containers as densely
as possible using the objects. In 1910, Thue [15] established a theorem for the
density of circle packing into a connected surface:

Theorem 3. Assume a set of at least two circles with radius r are packed into
a connected surface. Denote the sum of area of all small circles with radius r to
be S′ and denote the area of the surface to be S, respectively. Then S′

S ≤ π√
12
.

In our problem, we treat the areas of each feasible island as containers, and
objects are circles with radius r. Then the upper bound of the number of targets
equals to the number of circles that can be packed into the feasible area. In
our problem, we only restrict the centers of objects, i.e., the positions of targets
cannot exceed the boundary of the container. Therefore, we allow the objects
to cover at most distance r beyond the boundary of containers, as an example
shown in Fig.5. Given a snapshot as the input, the most number of targets in
the feasible area of the snapshot can be estimated.

Theorem 4 (Upper Bound of the Target Number). Let Ai and Ci be
the area and circumference of the ith feasible island respectively. Suppose the
minimum separation distance between targets is r, then the number of targets

in the feasible area must be smaller than
v∑

i=1

Ai+rCi√
12r2

, where Ai+rCi√
12r2

is the upper

bound of target number in the ith feasible island.
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Fig. 7. Illustration for dynamic upper bound

Using the similar idea of improving lower bound, we introduce a dynamic
counting method to utilize snapshot dependences to improve the upper bound
of the target number.

4.2 Improvement by Dynamic Counting

For a feasible region S, we define f(S) := A+rC√
12r2

where A is the area of S and C

is the circumference of S. By Theorem 4, f(S) is an upper bound of the number
of targets in S. Denote the set of feasible islands of the initial snapshot at time
t0 to be Sisland = {S1, · · · , SK}.

The basic idea of dynamic counting to improve the upper bound is based on
the fixed number of targets in a feasible island which is not connected to other
feasible islands during the concerned time. See Fig. 7 as an illustration. This is
an instance of six snapshots, in which the first four snapshots are composed of
two feasible islands and the last two snapshots are composed of a single feasible
island. From snapshot 1 and 2, we know that the number of targets in the first
and second feasible island is at most f(S1) and f(S5), respectively. Therefore,
the best upper bound of the number of targets in this instance is f(S1)+ f(S5).
However, if we only consider the last snapshot, the upper bound obtained is
f(S2 ∪ S4 ∪ S5 ∪ S6), which could be much worse than the bound given from
the dynamic view. Using this inspiration, we develop Algorithm 2 to improve
the upper bound of the number of targets. Basically, when the number of feasible
islands is not changed in an interval of snapshots, the number of targets in each
feasible island is bounded by its smallest region in this interval. When a feasible
island breaks up into several islands or some feasible islands are combined into
a single feasible island, the set of feasible islands and the upper bound of the
number of targets in each feasible island are both reassigned.
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Algorithm 2. Dynamic Upper Bound Counting Algorithm

Input: Set T = {t1, t2, · · · , tN} = U ∪D (up-set and down-set);
Stk ,Atk ,Etk ,∀0 ≤ k ≤ N ; Feasible islands Sisland = {S1, · · · , SK} at time t0;
Output: Upper bound of the number of targets: countupper ;

for i ← 1 to K do1

ui ← f(Si)2

Initialize countupper ← ∑k
i=1 ui;3

for k ← 1 to N do4

if tk ∈ U then5

Define l to be the sensor which is “off” in Stk−1 but “on” in Stk ;6

if P (l) ∩ Sisland = ∅ then7

Update Sisland ← Sisland ∪ P (l); ul ← f(P (l));8

else if P (l) intersects with at least two islands in Sisland then9

Define S′ ⊆ Sisland to be islands intersect with P (l);10

Define Sl := S′ ∪ P (l);11

Update Sisland ← (Sisland/S
′) ∪ Sl;12

Update ul ←
∑

Si∈S′ f(Si) + f(P (l));13

else14

if tk ∈ D then
Define l to be the sensor which is “on” in Stk−1 but “off” in Stk ;15

Define l to be in feasible island Si;16

if Si/P (l) is not connective then17

Define Si/P (l) to be m ≥ 2 feasible islands Si1, · · · , Sim;18

Update Sisland ← (Sisland/Si) ∪ {Si1, · · · , Sim};19

uij ← f(Sij) for ∀1 ≤ j ≤ m;20

else
ui ← min{ui, f(Si/P (l))};21

countupper ← min{countupper ,∑i ui}22

return countupper ;23

In the algorithm, we also divide the time of snapshots into up-set and down-
set. For both cases, the isolation and combination of islands are carefully con-
structed to make the connectivity of all “on” sensors following the truth. In
addition, we update each island’s upper bound of the number of targets every
round. In particular, when an “on” sensor is turned off in a snapshot, we catch
up the possibility of decreasing the upper bound of the target number in line 21.

In Algorithm 2, O(M) time suffices from line 1 to line 3 where M is the
number of sensors in the AOI. In either tk ∈ U or tk ∈ D, the cycle could be
finished in O(M) time. In total, the time complexity of Algorithm 2 is O(MN)
where N is the number of snapshots in total.

Based on the lower bound and the upper bound of target number, we can
investigate a more interesting property of the binary target counting problem,
i.e., the minimum separation distance for precisely target counting.
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5 Condition for Precisely Target Counting

A more interesting problem we may ask is: under what condition can we always
precisely count the number of targets without error. This problem was previously
studied by [12], which showed that when the separation distance r between each
pair of targets is larger than 4R, the number of targets can be precisely counted.
This traditional requirement of 4R separation distance is rather large. What we
are interested is that: whether can we find a smaller separation distance r < 4R
such that the number of targets can be precisely counted.

Consider the relationship between the upper bound and lower bound of the
target number in a feasible island. For the ith feasible island, suppose that the
lower bound of the target number is li. When the separation distance between
each pair of targets is ri, the following relationship must hold:

Ai + riCi√
12r2i

> Ni ≥ li

The minimally required separation distance for precisely target counting in island
i is the minimum value of ri which restricts the upper bound of target number
not larger than one plus the lower bound of the target number, i.e., the minimum
value of ri to keep li + 1 > Ai+riCi√

12r2i
≥ li. Therefore:

Theorem 5. The minimum required separation distance between each pair of
targets for precisely counting targets is γ = max{γ1, γ2, · · · , γv}, where γi =
Ci+

√
C2

i +8
√
3Ai(li+1)

2
√
3(li+1)

for all i.

Here γi is the solution of the equation
√
12(li + 1)γi

2
2 − Ci

γi

2 − Ai = 0, which
is the minimum separation distance to make the upper bound of target number
equal to the lower bound in island i. Moreover, γi could be even smaller if use
the upper bound of the target number by dynamic counting.

Theorem 5 reveals that the separation distance required for precisely target
counting is different in disparate snapshots and even varies at different loca-
tions in a snapshot. If the upper bound is unlimited, the minimum separation
distance is the largest diameter of the cliques formed by the positive sensors.
An example is shown in Fig.6, we can see the minimum separation distance
min{Δ1, Δ2, Δ3} < 4R, which shows a better potential of using BPS network
for precisely target counting than the traditional results.

6 Evaluation

To verify the counting bound, agents based simulation was conducted based
on PSensorSimulator platform[13]. Multiple agents, which simulated the mobile
targets were programmed to move independently along random paths in the
area of interest. The area of interest was a L×L rectangle area. In the area, M
BPS sensors were deployed. We investigated two kinds of sensor deployment. 1)
regular deployment, as shown in Fig. 8, in which the sensors were deployed in
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Fig. 8. Dynamic counting can fix boundary-pacing error

a grid topology, which fully covered the AOI. 2)random deployment, in which,
enough sensors were deployed randomly in a region and a subregion was selected
as the AOI, as shown in Fig.9(a).

For rendering the target tracking scenario, a graphical interface was developed.
As shown in Fig.8, the feasible area of targets were rendered by the internal
region surrounded by the red arcs. The sensors in the “off” state were in grey
with blue dashed lines. The feasible crossing arcs were colored in black if one
target was entering the sensor region, and was colored green if the sensor was
turned off because of target leaving. The UDG corresponding to the sensor’s
readings was illustrated in Fig.8, in which the vertex denoted the sensors in the
“on” state. The construction of UDG could be referred to [14]. We implemented
Algorithm 1 and 2 on the simulation platform to contrast the upper and lower
bound with the ground-truth number of targets.

6.1 Evaluation on Lower-bound

As a core unit of Algorithm 1, MCP-calculation routine is called every time the
state of a sensor changes. Since MCP-calculation is proved to be NP-Complete
problem, we use a PTAS approximation to implement MCP [7] calculation.

Regular deployment: At first, a particular example is shown in Fig.8 to il-
lustrate the effectiveness of the dynamic counting algorithm on improving the
counting lower bound. The scenario contains 64 sensors. Only the labels of the
“on” sensors are shown, and ten targets are moving in the area. As shown in
Fig.8, at 9.43 second in this scenario, the sensor 36 was “off” and sensor 37 was
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Fig. 9. Dynamic counting vs statistic counting on random deployment
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Fig. 11. Separation versus 4R

“on”. The MCP of the UDG of this scenario indicates the lower bound of the
target number is 9. At the 10.37 second, sensor 36 turned “on” and sensor 37
turned “off” simultaneously. In this case, the target which left sensor 37 could
only enter sensor 29 or sensor 45. After a short duration of 0.21 seconds, at the
10.58 second, the sensor 37 was turned “on” again. Since 0.21 seconds was not
enough for the target which triggered sensor 36 to reach the edge of sensor 37
due to time-space restriction, it must be the return of the previous target in
sensor 37, and this target is different from the target in sensor 36. Therefore, in
the DAG of (a-3), the edge between S36 and S37 was deleted. Deletion of this
edge improved the lower bound from 9 to 10, which verified the effectiveness of
the dynamic counting for lower bound improvement.

Random Deployment: To further investigate the performance of dynamic
counting method, we evaluated the target counting performances when the sen-
sors are randomly deployed. The setting is shown in Fig.9(a), in which sensors are
deployed with density of 0.2 per square meter in an 100m*100m area. A subregion
in the centric part of the area is selected as the AOI. So that in this evaluation,
the number of targets within the AOI may change overtime, therefore, we delete
line 14 in algorithm 3 in simulation. The number of targets in AOI given by both
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dynamic and static counting algorithm were evaluated. The result in a 100 sec-
onds experiment is shown in Fig.9(b). We can see that the lower bound given by
dynamic counting is slightly better than that given by static counting. The CDF
curve in Fig.9(c) summarized the performance difference, in which the counting
gap indicates the gap to the real number of targets. In conclusion, dynamic count-
ing showed better performance than the static counting.

6.2 Evaluation on Upper-bound

To verify the upper bound of counting, Algorithm 2 was implemented in PSen-
sorSimulator. For each isolated island formed by “on” sensors, circumference
and area were calculated with numeric method. According to Theorem 4, ratio
between predefined separation radius and sensing radius matters. Therefore, we
calculated the upper bound with different ratio. As shown in Fig.10, the upper
bound could be twice to 4 times to the ground-truth according to different ratios.

6.3 Evaluation on Separation Distance

Theorem 5 gives a non-trivial minimum separation distance γ for precise count-
ing. We compared this γ with classical separation distance 4R by simulation. As
shown in Fig.11, during 100 seconds experiment, the γ is always below 4R. This
results told us that, introducing dynamic information can improve the separation
for precisely counting by about R

4 .

7 Conclusion

This paper investigated target counting problem by a network of binary prox-
imity sensors. For the lower bound of the target number, we considered the
time-space restriction between a sequence of snapshots and proposed a dynamic
counting technique which improved the lower bound given by individual snap-
shot. As for the upper bound of the target number, we showed that if a minimum
separation distance between targets was considered, an upper bound could be
given by packing theorem. Moreover, a dynamic counting algorithm was pro-
posed to improve this upper bound. At last, by matching the upper bound and
lower bound, we investigated the condition for precisely target counting and
showed that the minimum separation distance for precisely counting could be
R
4 smaller than the previously known limit 4R. In the future work, the dynamic
counting method can be exploited to enhance existing multiple target tracking
algorithms. Apart from theoretical works, dynamic counting technique can be
applied in occupying sensing or enemy detection and tracking.
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