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Recently, a new business model called online group buying is emerging into our daily lives. For 
example, the online business platforms provide people group-discount coupons which will be 
issued for at least 𝑘 buyers grouping for a purchase. With the coupon link widely shared over the 
social platforms, they hope to promote people into groups to facilitate more purchases. Inspired 
by aforementioned real-world scenario with grouping constraint of a given minimum number of 
group members (𝜅-grouping constraint), in this paper, we analyze and model the diffusion-group 
behavior, and propose the 𝜅-grouping joining influence maximization (𝜅-GJIM) problem. Our 
problem aims to choose budgeted seeds to maximize the number of 𝜅-grouping joiners by social 
influence, where a 𝜅-grouping joiner is a person who can group with at least 𝜅−1 (𝜅 ≥ 2) like-mind 
partners. We prove that this problem is NP-hard. We also prove that the computation of objective 
is #P-hard and then propose an efficient method to estimate the objective. We show that 𝜅-GJIM 
is a non-submodular optimization problem, and then design two algorithms to solve it. At last, 
the experiments based on real-world datasets show that our methods provide good strategies for 
maximizing the influence with 𝜅-grouping constraint.

1. Introduction

The Internet has changed our modern life. It brought the online shopping into business and gave birth to many famous online 
shopping companies such as Amazon and Taobao. The breakout of COVID-19 further pushed more offline businesses to switch to 
online sales. Meanwhile, many new and creative online business models have been launched. As one of the most successful online 
business models, the online group buying [9] (also known as collective buying) offers products and services at significantly reduced 
prices once the buyers form a group with the minimum size requirement to online shop together. With the same item to buy, several 
individual shoppers who may be friends or possibly strangers can group into an entirety through the internet to collectively bargain 
with the businesses to get discounts. Since shoppers can benefit by paying less and the businesses can get profits by selling more 
items in bulk and reducing the cost from unstable transaction and overstock, this new business model has attracted many attentions 
[15,38,36] of both industry and academia. With the help of internet platform, this win-win business model of online group buying 
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Fig. 1. The example to show the difference between the influence with and without 𝜅-grouping constraint.

is on the rise and can be effectively advertised by viral marketing in online social networks, and many online shopping companies 
in China such as Pinduoduo, Meituan, and Taobao are vying to expand this business model in recent years. Especially Pinduoduo
- the most successful social commerce platform [40] in China, has fulfilled 61 billion orders and connected more than 11 million 
merchants to almost 900 million users globally in 2021. Now Pinduoduo plans to layout this business model to America, and they 
have launched a shopping application called Temu with a slogan “team up, price down” which became the No. 1 shopping app in 
the U.S. App Store in September 2022.

A key condition to the development of group buying is the mobile Internet. Today, online social platforms such as Facebook, 
Twitter, Weibo and Wechat, are rooted in our daily lives. It’s usual that we join the information propagation such as opening a 
shopping link recommended from friends and reposting it to others when we use these social applications. As a product of the 
Internet, the online social networks are playing an eye-catching role in viral marketing. Business marketing pays attention to taking 
advantage of the social networks, such as choosing a few people as mouthpieces to spread the positive information through the 
effect of word-of-mouth. This motivation creates the researches of influence maximization (IM). Based on the two popular cascade 
diffusion models which describe how the influence spreads over the social networks, Independent Cascade Model (IC) and Linear 
Threshold Model (LT), Kemp et al. [18] firstly formulate the classical IM problem in discrete optimization to find budgeted seeds 
such that the number of influenced nodes is maximized when the influence spreads from these seeds through social network. After 
it, a lot of studies related to social influence have been presented such as [21,7,1,5,3,22,13,29,30].

Due to the lack of researches of group buying over social influence, in this paper, we consider the real-world approaches in 
grouping buying to model the grouping problem, and further formulate a new influence maximization problem to choose budgeted 
seeds to maximize the number of the joiners who must group with at least 𝜅 − 1 (𝜅 ≥ 2) like-minded partners among the influenced 
people. Significantly different from most existing literature of influence maximization, our new problem requires the precision of 
the influence with grouping constraint of a given minimum number of group members. We show this difference in a vivid example. 
Fig. 1.(a) and Fig. 1.(b) draw the friendship circles labeled with item intentions for Bob and Peter respectively. With the consideration 
of viral marketing with grouping constraint of at least three members, Bob is the optimal choice to be a seed since Bob’s friends are 
all like-minded in the same intention item and hence he is more likely to lead to a group with three members. Peter can influence 
more friends than Bob since he has more friends in traditional influence model, but all of Peter’s friends have different intention 
items and hence are less likely to group together to meet the 3-grouping constraint.

As shown in the example, different from the traditional IM strategies without grouping constraint, intuitively we need to identify 
the joiners who have high grouping chances to reach the minimum number of like-minded partners. We also need to adopt good 
strategies of choosing influencers to intrigue this joiner to be grouped successfully as much as possible.

Therefore, based on the motivation above, our key contributions are as follows:
1. By observing the real-world approaches in grouping buying, we propose a labeled-faith graph to model the group to predict all 

possible groups.
2. Facing the requirement for the minimum number of members in a group, we formulate the 𝜅-grouping joining influence 

maximization problem (𝜅-GJIM) to choose a given number of seeds to maximize the number of the joiners who can group with at 
least 𝜅 − 1 (𝜅 > 2) like-minded partners among the influenced people. As far as we know, this is the first work to promote people to 
group via social influence in algorithmic level.

3. We prove that 𝜅-GJIM is NP-hard and the computation problem of its objective is #P-hard. We design a sample method to 
estimate the objective to make it more conveniently solve the optimal problem. We show that the optimization objective function is 
non-submodular, and we transfer it to be an optimization problem of the difference of two submodular functions. We also design an 
algorithm of adaptively greedily selecting based on a weight computation.

4. At last, we conduct several experiments for our methods based on the real-word networks. Our results demonstrate that the 
proposed methods provide outstanding strategies for the influence problem with grouping constraint such as the viral marketing of 
group buying.

In the rest of this paper, we firstly review and introduce some existing related works and formulations in section 2. In section 3, 
we introduce our diffusion grouping model through social influence. In section 4, we formulate the 𝜅-grouping joining influence 
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maximization problem and analyze some related properties. In section 5, we introduce the estimation method for the objective. In 
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section 6, we discuss the algorithms to solve the problem. Lastly in section 7, we show various experiments based on real-world 
networks and then give the conclusion in section 8.

2. Related work

In this section, we will briefly introduce some related works in influence maximization from two aspects: the variants in the 
extension of application scenarios and the optimization algorithms.

Since the work of Kemp et al. [18] firstly formulated the original problem of influence maximization into discrete optimization, 
many researchers have expanded the problem into more real-world scenarios, such as works in [21,7] with time constraint, [1,5]
with the aware of the topic, [3,22] under competition model, [30] with the strategy of multiple rounds of seeds, [13] in the rumor 
control, [29,28] of influence on a targeted set, [35] with the fairness for groups, [2] for campaigns balance, [27] with matching 
relationship and so on. Specially, work [41] proposed a group influence maximization problem in social networks which is close to 
our work. But in their model, there is a premise that there are many definite known groups without considering how the members 
form into a group. Then they aim to solve how to activate these groups as much as possible and a group is said to be activated if a 
certain ratio of nodes in this group is activated. However, in reality, it’s hard to confirm all the groups in advance since the result of 
grouping behavior is full of randomness. In our paper, we analyze real-world grouping mechanisms and integrate them into a more 
realistic model of influence maximization with group constraint.

Like the original problem, almost all variants of IM face the same hardness of the objective computation being #P-hard and 
the problem being NP-hard to solve. So beside focusing on the extension of application scenarios, many other works also study 
continuously on improving and optimizing in the aspect of algorithms. Specially, with the good property of submodularity [24] for 
lots of variants of the IM, the greedy hill-climbing method can guarantee the (1 − 1∕𝑒)-approximation. It runs heavily to use the 
Monte Carlo simulations to estimate the objective. So there are many improvements to reduce the Monte Carlo simulations such as 
[6,26], and CELF [20], CELF++ [11], but these algorithms are still inefficient in large-scale networks. Tang et al. [33] and Borgs 
et al. [4] proposed the reverse influence set (RIS) sampling method to estimate the influence for the large scale network. But there 
is a key problem of how to sample the RIS sets as less as possible to reduce the time complexity. After them, many RIS-based 
extensions and improvements are leading the researches such as the idea via Martingales (IMM) [32], stop-and-stare (SSA) and 
dynamic stop-and-stare (D-SSA) [25,14], and the online processing influence maximization (OPIM) [31]. Recently, as far as we have 
known, the work of [12] is the best one. In this paper, our algorithms are partially inspired by these estimation methods of RIS.

3. Model

In this section, we introduce the model of grouping over the influence spread on a social network 𝐺(𝑉 , 𝐸). In our model, there are 
two phases: first, by observing realistic approaches of how people group with each other based on the premise that the ones being 
influenced have willingness to participate the group buying, we model it by constructing a labeled-faith graph which can predict all 
possible groups; Second, to formulate our final target of promoting people with both the willingness and opportunity to successfully 
form a group over social viral marketing, we integrate the group model in the first phase with the diffusion model of social influence.

3.1. Grouping on the labeled-faith graph

Our motivation is inspired by observing the real-world approaches of how to group buy in Pinduoduo, a leading social commerce 
platform which offers customers group coupons with attractive prices. We give a vivid example in Fig. 2 where the group coupons 
are only applicable to items 𝐴 and 𝐵 with the minimum number of group members being at least three. In Fig. 2.(a), people {𝑓, 𝑔, 𝑗}
can express their grouping willingness and then wait to match partners automatically recommended by Pinduoduo’s backend system. 
We call such approach centralization which is usually seen when intermediary or public platforms (e.g., a mobile application of 
e-commerce platform, an internet forum, a purchasing agent) recommend like-minded strangers for the registers. By cooperating with 
Wechat, Pinduoduo also launches groups through Wechat links and moments to inspire people like {𝑎, 𝑖, 𝑒} to group by a bridge from 
his/her friends like person 𝑏. We call such approach as self-organizing that people seek like-minded partner via their local social 
circles of friends. Naturally, we can also mix centralization and self-organizing so people like {𝑐, 𝑔, 𝑑} can find partners partially by 
the centralization or the self-organizing. From Fig. 2(a) that describes the grouping relationships in the example, we build a labeled 
graph as an example in Fig. 2(b) and propose a concept as follows:

Definition 1. The labeled-faith graph 𝐺𝑓 (𝑉 𝑓 , 𝐸𝑓 , 𝑙) is an labeled undirected graph. Each edge in 𝐸𝑓 represents that the two ending 
nodes have group faith to group together directly, and each node 𝑣 in 𝑉 𝑓 is labeled by 𝑙(𝑣) to represent the item intention to group.

Group Faith: We first claim a concept called group faith which represents that two people can group together directly once they 
have the same item intentions. In centralization, any two people like 𝑓 and 𝑗 who may be far apart in social distance can still build a 
group faith through a global agent. In self-organizing, two people like 𝑎 and 𝑖 can build a group faith through their local neighbors’ 
bridging. However, to get the group faith, comparing to centralization, it’s more complex to predict whether two persons 𝑢 and 𝑣 can 
build a group faith by a series of local friends’ bridging in self-organizing. We formulate it to be an additional prediction problem 
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of the group faith function 𝛾 ∶ 𝑉 × 𝑉 → {0, 1}, where 𝑉 is the nodes set. We leave it as an open work which can be modeled into an 
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Fig. 2. The example to illustrate the motivation of modeling the labeled-faith graph, where each person has a prediction of item intention, (a) is the observation of 
grouping approaches in Pinduoduo and (b) is an equivalent view from the graph theory to formulate the grouping approaches.

extra machine learning problem such as learning it from the record of grouping in history. Here, we give a heuristic idea to set the 
group faith directly based on the social intimacy, i.e., social distance in the social network defined as follows:

𝛾𝑡(𝑢, 𝑣) =

{
1 if the number of hops between 𝑢 and 𝑣 is no more than 𝑡 in the social network,

0 if the number of hops between 𝑢 and 𝑣 is more than 𝑡 in the social network.

In Fig. 2.(b), we give a vivid sample of building group faith partially by 𝛾2 (i.e., two nodes having faith are putting into a group 
because either they are friends or they have a common friends in local social networks in Wechat) and partially by a public platform 
in Pinduoduo.

Item Intention: Mark a label 𝑙(𝑣) for the person 𝑣’s item intention to group, it can be seen as a signal flag for people to cluster, 
and more specifically it can be the preferences of the items in the suitable range of the group coupon like the taste preferences in 
meal, the different projects in playing, the commodities in buying, movies in watching, or some grouping condition limitation such as 
the generation of age, geographic location and so on. These labels often are obtainable by well studied methods such as the machine 
learning in recommendation. Note that we have 𝑉 𝑓 ⊆ 𝑉 , i.e., not every node in 𝑉 must have a label. Since the group coupon often 
has a limited range of items, we can remove these people from the labeled-faith graph like person 𝑏 in Fig. 2.(a) whose item intention 
may not be in the range.

Grouping on labeled-faith graph: There is a reasonable assumption that people will group and expand the members to meet 
the minimum number requirement as much as possible by following intuitive strategies: (1) inviting others with the same label but 
without grouping; (2) merging groups with the same label into one. But we need to identify whether groups can be merged into one 
and whom people can invite, and the labeled-faith group can solve this issue. For strategy (1), people can invite the neighbors 
in the labeled-faith graph. For strategy (2), like-minded groups can be merged into one as there exist edges among them in 
the labeled-faith graph. So following these strategies on the labeled-faith graph, we can predict all potential groups based on a 
labeled-faith graph as follows:

Definition 2. For a set 𝑇 of nodes from a labeled-faith graph 𝐺𝑓 (𝑉 𝑓 , 𝐸𝑓 , 𝑙), we define 𝑇 as a potential group in 𝐺𝑓 when it satisfies 
both following conditions:

• All nodes have the same label, i.e., 𝑙𝑢 = 𝑙𝑣 for any 𝑢, 𝑣 ∈ 𝑇 .
• The vertex-induced subgraph 𝐺𝑓 (𝑇 ) is a connected graph.

Specially, we call a potential group 𝑇 a maximal potential group in 𝐺𝑓 iff the vertex-induced subgraph 𝐺𝑓 (𝑇 ) is a component of 
𝐺𝑓 .

According to the definition above, from the view of graph theory, we unify the different grouping mechanisms into a general 
framework of potential groups in the labeled-faith graph, i.e., how people among 𝑇 finally grouping into a series of groups 𝐶 by 
whatever mechanisms is equal to producing a series of potential groups in labeled-faith graph 𝐺𝑓 . Nextly we combine it with social 
207

influence.
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3.2. Integrating grouping with social influence

Let us see how to promote group buying over social viral marketing: Initially, the businesses will choose a few persons as seeds, 
and these seeds will spread the information of the activities such as providing the link of group purchase coupons. Like the spread of 
the virus, in the word-of-mouth, people will try to share and repost this message through the social platforms one by one. We mark 
the information diffusion model as , and introduce the widely adopted Independent Cascade (IC) model: Let 𝐺𝑖(𝑉 𝑖, 𝐸𝑖, 𝑝𝑖) denote 
the influence propagation graph with the influence probability 𝑝𝑖(𝑒) ∈ [0, 1] for each direct edge 𝑒. The influence spreads from a seed 
set 𝑆 in rounds. Initially, only the seeds are 𝑎𝑐𝑡𝑖𝑣𝑒 and other nodes are 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒. In each round, every node that becomes 𝑎𝑐𝑡𝑖𝑣𝑒 in the 
previous round has one chance to activate its out-neighbors by the influence probability. The process terminates when no 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒
nodes can be influenced to become 𝑎𝑐𝑡𝑖𝑣𝑒. Note that the influence probability in IC model, i.e., the retweet probability between two 
nodes in diffusion scenes is a preset parameter and can be learned as mentioned by the works in [10] and [39] from real-world data 
in history.

Once people have willingness to participate, they will try to group and we mark the grouping model as . Note that all groups 
will try their best to achieve the goal of satisfying minimal number constraint by strategies (1) and (2). Let ◦ denote the 
integrate diffusion-group model from . Here, we give an example in Fig. 3 to show a possible integrate diffusion-group process 
with grouping on labeled-faith graph and IC model. In this example, nodes are labeled by the location of NY (New York) and HK 
(Hong Kong) and we need to group them by the same location with at least 3 nodes in a group. We model its edge of group faith 
by 𝛾2. Initially, seeds 𝑣1 and 𝑣3 successfully activate 𝑣4 and 𝑣5 respectively, and based on the faith and intention, we get the first 
groups {𝑣3, 𝑣5}, {𝑣1, 𝑣4}. In the next round, we have 𝑣6 being activated by 𝑣4 and 𝑣5, and 𝑣7 being activated by 𝑣5. Based on the faith 
and intention, 𝑣6, 𝑣7 can group together and we have the groups {𝑣6, 𝑣7}, {𝑣3, 𝑣5}, {𝑣1, 𝑣4}. In the next round, we have 𝑣8, 𝑣10 being 
activated by 𝑣6 and 𝑣7 respectively, and 𝑣8 can join the group {𝑣1, 𝑣4} by the invitation of 𝑣4. 𝑣10 can’t join any existing group since 
there will be no any invitation. Specially, to expand the number of members to be at least 3, group {𝑣6, 𝑣7}, {𝑣3, 𝑣5} can be merged 
into one by the faith between 𝑣6 and 𝑣5. We have final groups {𝑣10}, {𝑣6, 𝑣7, 𝑣3, 𝑣5}, {𝑣8, 𝑣1, 𝑣4}. Now, there is no any new node that 
can be activated, and we get the final successful groups {𝑣6, 𝑣7, 𝑣3, 𝑣5}, {𝑣8, 𝑣1, 𝑣4} which satisfy the minimum number limitation of 3.

4. Problem formulation

In this section, based on the model above, we further formalize the problem of 𝜅-grouping joining influence maximization.

Definition 3. 𝜅-Grouping Joining Influence Maximization (𝜅-GJIM): Given a social network 𝐺(𝑉 , 𝐸) with a influence diffusion 
model  and a group model , let the 𝜅-grouping joining influence 𝜎𝜅 (𝑆) denote the expected number of nodes who can group 
with at least 𝜅−1 (𝜅 ≥ 2) like-mind influenced partners after the stochastic diffusion grouping model ◦ from the seeds 𝑆. Our 
𝜅-Grouping Joining Influence Maximization problem is to find a seed set 𝑆∗

𝜅 with size 𝑘 to maximize the 𝜅-grouping joining influence 
𝜎𝜅 . i.e.,

𝑆∗
𝜅 ∶= 𝑎𝑟𝑔𝑚𝑎𝑥

𝑆⊆𝑉 ,|𝑆|=𝑘 𝜎𝜅 (𝑆).
In this paper, we solve this problem with the group model on the labeled-faith graph we propose and use popular IC model as 

the influence diffusion model. Kempe et al. [18] gave an equivalent process by the live-edge subgraph to get a diffusion realization 
of IC, where a live-edge graph 𝑔 is a subgraph of 𝐺𝑖 by randomly preserving each edge 𝑒 from 𝐺𝑖 with probability of 𝑝𝑖(𝑒). Let 𝑔𝑆 be 
the set of nodes that seeds in 𝑆 can reach on 𝑔, then we get 𝑔𝑆 as a realization of influence spread from seeds set 𝑆. We can further 
have the objective as following:

Theorem 1. Let 𝑃𝑟[𝑔] denote the probability distribution for the live-edge subgraph 𝑔 in 𝐺𝑖 and 𝑀𝐺
𝑓
𝑣 (𝑔𝑆 ) be the maximal potential group 

in the vertex-induced labeled-faith subgraph 𝐺𝑓 (𝑔𝑆 ) which includes 𝑣, we have

𝜎𝜅 (𝑆) =
∑
𝑔⊆𝐺

𝑃 𝑟[𝑔]
∑
𝑣∈𝑉

𝜒{|𝑀𝐺𝑓𝑣 (𝑔𝑆 )| ≥ 𝜅},
where 𝜒{𝑒𝑥𝑝} is the indicator function where 𝜒{𝑒𝑥𝑝} = 1 if 𝑒𝑥𝑝 is true, otherwise 𝜒{𝑒𝑥𝑝} = 0.

Proof. Let 𝜎𝜅 (𝑣, 𝑔, 𝑆) denote the probability that a node 𝑣 can join in a potential group with size at least 𝜅 over 𝑔𝑆 based on the 
labeled-faith graph 𝐺𝑓 . Let 𝑔,𝑆 denote all possible outputs of groups based on the diffusion realization of 𝑔𝑆 , 𝑃𝑟[𝑐] denote the 
probability of an output 𝐶 from 𝑔,𝑆 , and 𝑐𝑣 denote the group in 𝐶 that v belongs to, then we have 𝜎𝜅 (𝑣, 𝑔, 𝑆) =

∑
𝐶∈𝑔,𝑆 𝑃 𝑟(𝐶)𝜒{|𝑐𝑣| ≥

𝜅}. By the group merging strategy on the labeled-faith graph, we can ensure when |𝑐𝑣| < 𝜅, 𝑐𝑣 must be the maximal potential group 
in 𝐺𝑓 (𝑔𝑆 ), otherwise if 𝑐 is not a maximal potential group in 𝐺𝑓 (𝑔𝑆 ), we have a node 𝑣, 𝑣 ∉ 𝑐 which has a influenced neighbor 𝑢 in 
𝐺𝑓 with same label in 𝑐, and we suppose the 𝑣’s group is 𝑐𝑣, but by the group strategy, 𝑐 and 𝑐𝑣 should be merged into one group 
to expand the number of members to be 𝜅 as much as possible and it’s contradictory. So we have 𝑐𝑣 =𝑀𝐺

𝑓
𝑣 (𝑔𝑆 ), and then since 

𝑐𝑣 ⊆𝑀𝐺
𝑓
𝑣 (𝑔𝑆 ), we have 𝜒{|𝑐𝑣| ≥ 𝜅} = 𝜒{|𝑀𝐺

𝑓
𝑣 (𝑔𝑆 )| ≥ 𝜅}, and hence 𝜎𝜅 (𝑣, 𝑔, 𝑆) = 𝜒{|𝑀𝐺

𝑓
𝑣 (𝑔𝑆 )| ≥ 𝜅}. We have∑ ∑ ∑ ∑

𝑓
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𝜎𝜅 (𝑆) =
𝑔⊆𝐺

𝑃 𝑟[𝑔]
𝑣∈𝑉

𝜎𝜅 (𝑣, 𝑔,𝑆) =
𝑔⊆𝐺

𝑃 𝑟[𝑔]
𝑣∈𝑉

𝜒{|𝑀𝐺𝑣 (𝑔𝑆 )| ≥ 𝜅}.
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Fig. 3. An instance of the diffusion-group process.
209
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Fig. 4. The example applied to analyzing the properties of modularity.

We proved it. □

If we relax the group size limitation of 𝜅 to be 1 (i.e., people can join independently as long as being influenced), it is the 
traditional IM problem which is NP-hard. However, in our 𝜅-GJIM problem, the 𝜅 is at least 2 with grouping constraint, and next we 
show it is still a hard problem.

Theorem 2. The 𝜅-GJIM problem is NP-hard.

Proof. Given an arbitrary instance of the NP-complete Set Cover problem defined by a set collection  = {𝑆1, 𝑆2, ⋯ , 𝑆𝑚} with 
ground set 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑛}. We wish to know whether there exists 𝑘 sets in  whose union is equal to 𝑈 . Here we show it’s a 
special case of our 𝜅-GJIM problem by constructing an instance as follows. Let 𝑉 = {𝑣11, … , 𝑣𝜅1 , … , 𝑣1𝑛, … , 𝑣𝜅𝑛 , 𝑠1, … , 𝑠𝑚}, where each 
𝑣
𝑗
𝑖 (1 ≤ 𝑗 ≤ 𝜅, 1 ≤ 𝑖 ≤ 𝑛) is the 𝑗-th copy corresponding to node 𝑢𝑖 in 𝑈 , and each 𝑠𝑡(1 ≤ 𝑡 ≤ 𝑚) corresponds to the set 𝑆𝑡 in  . Create 
𝐸𝑖’s edge < 𝑠𝑡, 𝑣

𝑗
𝑖 > as long as 𝑢𝑖 ∈ 𝑐𝑡 and set the influence probability with 1 to make the influence is deterministic. Creat 𝐸𝑓 ’s edge 

< 𝑣
𝑗1
𝑖 , 𝑣

𝑗2
𝑖 > for each couple copies of 𝑢𝑖, and mark each label of 𝑣𝑗𝑖 , 𝑠𝑡 respectively with 𝑖, 𝑛𝜅 + 𝑡. So only same copies can group 

together. We have if there exists 𝑘 seeds in 𝐺 who can influence all nodes {𝑣𝑖𝑗}, i.e., 𝜎𝜅 = 𝜅𝑚, they must be the nodes from {𝑠𝑡} and 
correspond a solution of sets in  which can cover 𝑈 . So we have that any 𝑆 of 𝑘 nodes in V has 𝜎𝜅 ≥ 𝜅𝑚, iff the Set Cover problem 
can be solved. So the 𝜅-GJIM problem is NP-hard. □

Theorem 3. The computation problem of 𝜎𝜅 (.) is #P-hard.

Proof. Given an arbitrary instance of the #P-complete s-t connectedness counting problem defined by a graph 𝐺′(𝑉 ′, 𝐸′) and nodes 
𝑣𝑠, 𝑣𝑡. Let  = {𝑔𝜂}, 1 ≤ 𝜂 ≤ 𝑧, where 𝑔𝜂 denotes 𝐺′s subgraph whose 𝑣𝑠 connects to 𝑣𝑡. We wish to count ’s size 𝑧. Here we show 
it’s a special case of our computation problem of 𝜎𝜅 by constructing an instance as follows. Let 𝑉 = 𝑉 ′ ∪ {𝑣1𝑡 , … , 𝑣𝜅𝑡 } where 𝑣𝑗𝑡
(1 ≤ 𝑗 ≤ 𝜅) is the 𝑗-th copy of node 𝑡. Create 𝐸𝑓 ’s edge < 𝑣𝑗1𝑡 , 𝑣

𝑗2
𝑡 > for any two copies of 𝑣𝑡 and mark each node in 𝑉 with different 

labels and all copies of 𝑣𝑡 with same labels. Let 𝐸𝑖 = 𝐸′ ∪ {< 𝑣𝑡, 𝑣
𝑗
𝑡 >} with fixed influence probability of 𝑝, (0 < 𝑝 < 1). We have 

𝜎𝜅 ({𝑣𝑠}) = 𝜅𝑝𝜅
∑
𝑔𝜂∈ 𝑝

|𝐸′| = 𝜅𝑧𝑝|𝐸′|+𝜅 . So if we have the value of 𝜎𝜅 ({𝑣𝑠}), then we can get 𝑧 by 𝑧 = 𝜎𝜅 ({𝑠})
𝜅𝑝|𝐸′ |+𝜅 . So the computation 

problem of 𝜎𝜅 (.) is #P-hard. □

The NP-hard problem on set functions can be approximationly solved well under some good properties such as submodularity or 
supmodularity [24]. Unfortunately, these properties may absent in our problem.

Theorem 4. The function of 𝜅-grouping joining influence 𝜎𝜅 (.) is not neither submodular nor supmodular.

Proof. We prove it by a counterexample. Let Δ𝑢𝜎𝜅 (𝑆) be the gain for the objective after adding any node 𝑢 into a seeds set 𝑆. As 
shown in the example of Fig. 4, we set the influence to be definite, i.e., each direct edge represents the 100% influence. Then given 
two seeds set 𝑆1 = {𝑠2}, 𝑆2 = {𝑠1, 𝑠2}, 𝑆1 ⊆ 𝑆2, when let 𝜅 = 2, we have Δ𝑠3𝜎2(𝑆1) = 2 and Δ𝑠3𝜎2(𝑆2) = 1, i.e., Δ𝑠3𝜎2(𝑆2) < Δ𝑠3𝜎2(𝑆1), 
hence 𝜎𝜅 (.) isn’t supmodular. But when we let 𝜅 = 3, we have Δ𝑠3𝜎3(𝑆1) = 0 and Δ𝑠3𝜎3(𝑆2) = 1, i.e., Δ𝑠3𝜎2(𝑆2) >Δ𝑠3𝜎2(𝑆1), hence 𝜎𝜅 (.)
isn’t submodular. □

Nextly, we will design algorithms to solve this problem. Since computing 𝜎𝑘(.) is a #P-hard problem, in the following section, we 
consider the estimation for the objective instead of exact computation.

5. Estimation for the objective

Naturally, based on the Monte Carlo simulation of the process in the model ◦, we can estimate the objective since it’s 
210

the expectation of the total number of nodes which group successfully. However, we don’t know the exact process of the model 
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Fig. 5. An instance of graph 
𝑓

4 .

even with the group strategies by the labeled-faith graph. Also, like many known problems in social influence based on stochastic 
model, the simulation is time consuming when the graph is large. Further, it needs to restart the simulations when the set of seeds is 
changed. Therefore, to estimate the objective fast, we will introduce a method without the need to know the specific process of . 
This method only needs to sample an one-time collection of hypergraphs and then can be used to compute for any seeds set changed 
without extra sampling.

5.1. 𝜅-joining reverse reachable hypergraph (𝜅-JRRH)

Let 𝐂𝜅 [𝐺𝑓 ] be the family of all potential groups in 𝐺𝑓 with size at least 𝜅. Mark 𝐂𝑣𝜅 [𝐺𝑓 ] ∶= {𝑐|𝑐 ∈ 𝐂𝜅 [𝐺𝑓 ], 𝑣 ∈ 𝑐},  𝑓 [𝑐] ∶=
∪𝑣∈𝑐{𝑢| < 𝑢, 𝑣 >∈𝐸𝑓 , 𝑙(𝑣) = 𝑙(𝑢)}, 𝜏 ∶=∑

𝑐∈𝐂𝜅 [𝐺𝑓 ] |𝑐| and 𝑃𝑟[𝑐] ∶= |𝑐|
𝜏

. We introduce a following random hypergraph.

Definition 4 (𝜅-joining reverse reachable hypergraph (𝜅-JRRH)). Choosing a set 𝑐 from the set family 𝐂𝜅 [𝐺𝑓 ] by the probability 
distribution with 𝑃𝑟[𝑐], sampling a live-edge subgraph 𝑔, nextly for each node 𝑢 ∈ 𝑐 and the set 𝑁𝑓 (𝑐)∕𝑐, respectively, getting the 
set of nodes 𝑟𝑢 reversely reachable by 𝑢 and nodes 𝑟 reached reversely by 𝑁𝑓 (𝑐)∕𝑐 over 𝑔, lastly marking 𝜔 ∶= (𝑐, 𝑔) and building the 
hypergraph 𝜔 = (𝑟𝐶 , {𝑟𝑢|𝑢 ∈ 𝑐}), we define 𝜔 as the 𝜅-joining reverse reachable hypergraph (𝜅-JRRH).

Let us review the sample process of 𝜅-JRRH in detail. We need to get the distribution of sets in 𝐂𝜅[𝐺𝑓 ]. This problem can be 
solved through finding all connected subgraphs for a given size cardinality as the works in [17,8,19]. Nextly we introduce how to 
construct a labeled-weighted directed graph marked as 𝑓𝜅 based on the collection of node sets 𝐂𝜅 [𝐺𝑓 ] as follows: (1) Each node 𝑣𝑐
corresponds to a set 𝑐 in 𝐂𝑣𝜅 [𝐺𝑓 ] weighted with 𝑤(𝑣𝑐 ) ∶=

|𝑐|
𝜏

; (2) There is a direct edge < 𝑣𝑐1 , 𝑣𝑐2 > labeled by node 𝑢 while there is 
𝑐1 ∪ {𝑢} = 𝑐2 correspondingly.

Here in Fig. 5, we show a vivid example constructed from the instance of faithed labeled graph in Fig. 3. Then, review the 𝜅-JRRH 
sampling process and based on such graph we can easily sample the set 𝑐 from 𝐂𝜅 [𝐺𝑓 ] as sampling a node in 𝑓𝜅 following the node 
weight 𝑤(𝑣𝑐 ) and get the set 𝑁𝑓 (𝑐)∕𝑐 which is the set of 𝑣𝑐 ’s out-going edge labels. Further, besides sampling a set above, we need 
to firstly sample a subgraph from 𝐺𝑖 by removing each influence edge by the edge probability and then doing multiple reverse 
breadth-first searches (bfs) sourced from different nodes over the induced subgraph. There is no need to remove all edges in advance 
since some edges may not be searched. Therefore, we use a flying random reverse search instead, i.e., removing edges randomly 
while searching. This flying operation can avoid removing the unnecessary extra edge and hence reduce the cost in sampling. We 
also adopt a more efficient multiple-sourced breadth-first search [34] instead of multi independent reverse breadth-first searches 
sourced from different nodes. So based on the above optimization strategy, we propose the optimized sampling algorithm as shown 
in Algorithm 1.

Here in Fig. 6, we show a vivid 4-JRRH sampling process based on the instance in Fig. 3. Firstly, choose a node from the graph in 
Fig. 5 by the probability of the node weight and they are {𝑣1, 𝑣4, 𝑣8, 𝑣9} and we have 𝑙𝑜𝑢𝑡𝑐 = {𝑣10}. Nextly we do a multiple-sourced 
breadth-first search reversely and randomly over 𝐺𝑖 from these source nodes and get the initial 𝑉 𝑖𝑠𝑖𝑡 as {(𝑣1, {𝑏1}), (𝑣4, {𝑏4}), (𝑣8, {𝑏8}), 
(𝑣9, {𝑏9}), (𝑣10, {𝑏10})} corresponding to 5 subprocesses of bfs. For each source node 𝑢, we get the 𝑠𝑒𝑒𝑛𝑢 = {𝑢} which represents the 
set of nodes having been visited by the source node 𝑢. In the first level of 𝑉 𝑖𝑠𝑖𝑡, the edge < 𝑣8, 𝑣6 > is flipped to be “off”, and 
the edges < 𝑣4, 𝑣1 >, < 𝑣4, 𝑣2 >, < 𝑣9, 𝑣6 >, < 𝑣9, 𝑣7 >, < 𝑣10, 𝑣7 > are flipped to be “on”. We update 𝑠𝑒𝑒𝑛𝑣1 = {𝑣1, 𝑣4}, 𝑠𝑒𝑒𝑛𝑣6 = {𝑣9}, 
𝑠𝑒𝑒𝑛𝑣7 = {𝑣9, 𝑣10} and get the next level of 𝑉 𝑖𝑠𝑖𝑡 = {(𝑣1, {𝑏4}), (𝑣2, {𝑏4}), (𝑣6, {𝑏9}), (𝑣7, {𝑏9}), (𝑣7, {𝑏10})}. In the second level of 𝑉 𝑖𝑠𝑖𝑡, 
the edge < 𝑣6, 𝑣5 > is flipped to be “off”, and the edges < 𝑣6, 𝑣4 >, < 𝑣7, 𝑣5 > are flipped to be “on”. We update 𝑠𝑒𝑒𝑛𝑣4 = {𝑣9, 𝑣4}, 
𝑠𝑒𝑒𝑛𝑣5 = {𝑣9, 𝑣10} and get the next level of 𝑉 𝑖𝑠𝑖𝑡 = {(𝑣4, {𝑏9}), (𝑣5, {𝑏9, 𝑏10})}. In the third level, the edge < 𝑣5, 𝑣2 > is flipped to 
be “off” and the edge < 𝑣5, 𝑣3 > is flipped to be “on”. We update 𝑠𝑒𝑒𝑛𝑣1 = {𝑣9, 𝑣1, 𝑣4}, 𝑠𝑒𝑒𝑛𝑣3 = {𝑣9, 𝑣10} and get the next level of 
𝑉 𝑖𝑠𝑖𝑡 = {(𝑣1, {𝑏9}), (𝑣2, {𝑏9}), (𝑣5, {𝑏9, 𝑏10})}. Since there is no any out-going edge for the nodes 𝑣1, 𝑣2, 𝑣5 in the next level of 𝑉 𝑖𝑠𝑖𝑡, the 
search process terminates and we get the corresponding bfs results for each source node and hence the hypergraph as shown in the 
211

right part of Fig. 6.
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Fig. 6. An instance of Sampling 4-JRRH.

Algorithm 1: Sample 𝜅-JRRH.

1 Select a node 𝑣𝑐 in the graph 𝑓𝜅 with the probability of node weight;
2 Get the node set 𝑐 that 𝑣𝑐 corresponds to;
3 Get 𝑣𝑐 ’s all out-going edges’ labels 𝑙𝑜𝑢𝑡𝑐 ;
4 𝑆𝑒𝑒𝑛𝑢 ← {𝑢}, 𝑟𝑢 ← {𝑢} for all 𝑢𝑖 ∈ 𝑐 ∪ 𝑙𝑜𝑢𝑡𝑐 ;
5 𝑉 𝑖𝑠𝑖𝑡 =

⋃
𝑢∈𝑐∪𝑛𝑐{(𝑢, {𝑏𝑢})};

6 while 𝑉 𝑖𝑠𝑖𝑡 ≠ ∅// Each 𝑉 𝑖𝑠𝑖𝑡 level do

7 𝑉 𝑖𝑠𝑖𝑡𝑁𝑒𝑥𝑡← ∅;
8 for each 𝑣 ∈⋃

(𝑜,𝐵𝑜 )∈𝑉 𝑖𝑠𝑖𝑡
{𝑜} do

9 𝐵∗
𝑣
=
⋃

(𝑣,𝐵′
𝑣 )∈𝑉 𝑖𝑠𝑖𝑡

𝐵′
𝑣
;

10 for each 𝑣’s in-neighbor 𝑢 in 𝐺𝑖 do

11 if edge 𝑒𝑢𝑣 has not been flipped then

12 Flip 𝑒𝑢𝑣 with probability 𝑝𝑢𝑣 ;
13 if successful then

14 Mark 𝑒𝑢𝑣 to be “on”;

15 else

16 Mark 𝑒𝑢𝑣 to be “off”;

17 if 𝑒𝑢𝑣 has been “on” then

18 𝐵𝑢 ←𝐵∗
𝑣
∕{𝑏𝑜|𝑜 ∈ 𝑆𝑒𝑒𝑛𝑢};

19 if 𝐵𝑢 ≠ ∅ then

20 𝑉 𝑖𝑠𝑖𝑡𝑁𝑒𝑥𝑡 ← 𝑉 𝑖𝑠𝑖𝑡𝑁𝑒𝑥𝑡 ∪ (𝑢,𝐵𝑢);
21 𝑆𝑒𝑒𝑛𝑢 ← 𝑆𝑒𝑒𝑛𝑢 ∪ {𝑜|𝑏𝑜 ∈𝐵𝑢};
22 for each 𝑜 ∈ {𝑜|𝑏𝑜 ∈𝐵𝑢} do

23 𝑟𝑜 ← 𝑟𝑜 ∪ {𝑢};

24 𝑉 𝑖𝑠𝑖𝑡 ← 𝑉 𝑖𝑠𝑖𝑡𝑁𝑒𝑥𝑡;

25 Build a hypergraph (𝑉 −∪𝑣∈𝑙𝑜𝑢𝑡𝑐 𝑟𝑣, {𝑟𝑢, 𝑢 ∈ 𝑐});
26 return 

5.2. Estimation based on 𝜅-JRRH

Mark the sample space 𝛀∗ ∶= {(𝑐, 𝑔)|𝑐 ∈ 𝐂𝜅 [𝐺𝑓 ], 𝑔 ∈ 𝐺}, and we can compute the union probability 𝑃 [𝜔] = 𝑃𝑟[𝑐]𝑃𝑟[𝑔] = 𝑃𝑟[𝑔]|𝑐|
𝜏

, 
where 𝜔 ∈𝛀∗ is the tuple generated in the random process of 𝜅-JRRH. Then we have another sample space 𝛀 ∶= {𝜔|𝜔 ∈𝛀∗}, and 
hence get a bernoulli variable 𝜉𝑆 : 𝛀 → {0, 1} where 𝜉𝑆 () = 𝜒{𝑆 ⊆ 𝑉} ⋅𝜒{𝑑𝑒𝑔 (𝑆) = |𝐸 |}, 𝑑𝑒𝑔(𝑆) ∶= |𝐷 (𝑆)| is the number of all 
hyperedges 𝐷 (𝑆) ⊆ 𝐸 that intersect 𝑆. Nextly as shown in the Theorem 5, we can get an equivalent computation for our objective 
by computing the expectation of the bernoulli variable 𝜉𝑆 . To prove this theorem, we need firstly prove following three lemmas:

Lemma 1. We have 𝐸(𝜉𝑆 ) =
1
𝜏

∑
𝑐∈𝐂𝜅 [𝐺𝑓 ],𝑔∈𝐺 P[𝑔]|𝑐|(∏𝑢∈𝑐 𝜒{𝑆 ∩ �̄�{𝑢} ≠ ∅}) ⋅ 𝜒{𝑆 ∩ �̄�𝑁𝑓 (𝑐)∕𝑐 = ∅}, where �̄� denotes the reverse of a direct 
212

graph 𝑔.
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Proof. By the definition of the 𝜉𝑆 , we have

𝐸(𝜉𝑆 ) =
∑
∈𝛀

𝑃𝑟()𝜉𝑆 () =
∑
𝜔∈Ω∗

𝑃𝑟[𝜔]𝜉𝑆 (𝜔) =
∑
𝜔∈Ω∗

𝑃𝑟[𝑔]|𝑐|
𝜏

𝜉𝑆 (𝜔)

=
∑
𝜔∈Ω∗

𝑃𝑟[𝑔]|𝑐|
𝜏

𝜒{𝑆 ⊆ 𝑉𝜔} ⋅ 𝜒{𝑑𝑒𝑔𝜔 (𝑆) = |𝐸𝜔
|}

Nextly we prove

𝜒{𝑆 ⊆ 𝑉𝜔} ⋅ 𝜒{𝑑𝑒𝑔𝜔 (𝑆) = |𝐸𝜔
|} = (

∏
𝑢∈𝑐

𝜒{𝑆 ∩ �̄�{𝑢} ≠ ∅}) ⋅ 𝜒{𝑆 ∩ �̄�𝑁𝑓 (𝑐)∕𝑐 = ∅}.

By the construction of the hypergraph, we have 𝑟 = �̄�𝑁𝑓 (𝑐)∕𝑐 , and 𝑉𝜔 = 𝑟𝐶 . It’s obviously that 𝜒{𝑆 ⊆ 𝑟𝐶} = 𝜒{𝑆 ∩ 𝑟 = ∅}. So when 
𝜒{𝑆 ∩ 𝑟 = ∅} = 0, we also have 𝜒{𝑆 ⊆ 𝑟𝐶} = 0 and the left must equal to the right with value of 0. When 𝜒{𝑆 ∩ 𝑟 = ∅} = 1, we also have 
𝜒{𝑆 ⊆ 𝑟𝐶} = 1. Since 𝐸𝜔

= {𝑟𝑢|𝑢 ∈ 𝑐} and 𝑟𝑢 = �̄�{𝑢}, we can easily have ∏𝑢∈𝑐 𝜒{𝑆 ∩ �̄�{𝑢} ≠ ∅} = 𝜒{∑𝑢∈𝑐 𝜒{𝑆 ∩ 𝑟𝑢 ≠ ∅} = |𝑐|}. Then we 
have ∏𝑢∈𝑐 𝜒{𝑆 ∩ �̄�{𝑢} ≠ ∅} = 𝜒{∑𝑢∈𝑐 𝜒{𝑆 ∩ (𝑟𝑢) ≠ ∅} = |𝑐|} = 𝜒{𝑑𝑒𝑔𝜔 (𝑆) = |𝐸𝜔

|}. So we have the left always equals to the right. □

Lemma 2. We have |𝑀𝐺
𝑓
𝑣 (𝑔𝑆 )| ≥ 𝜅 iff exists a potential group 𝑐 (𝑣 ∈ 𝑐) in 𝐺𝑓 with size at least 𝜅 satisfying two following conditions:

(1): Each node in 𝑐 can reach reversely by at least one seed node over 𝑔, and the equivalent logical equation is ∏𝑢∈𝑐 𝜒{𝑆 ∩ �̄�{𝑢} ≠ ∅} = 1.

(2): For each node 𝑢 in 𝑐, all neighbors of 𝑢 in 𝐺𝑓 with the same label as 𝑢 not belonging to 𝑐 can’t reach reversely by any seed node over 𝑔. 
The equivalent logical equation is 𝜒{𝑆 ∩ �̄�𝑁𝑓 (𝑐)∕𝑐 = ∅} = 1.

Further, we have the lemma as the following logical equation:

𝜒{|𝑀𝐺𝑓𝑣 (𝑔𝑆 )| ≥ 𝜅} = ⋁
𝑐∈𝐂𝑣𝜅 [𝐺𝑓 ]

(
∏
𝑢∈𝑐

𝜒{𝑆 ∩ �̄�{𝑢} ≠ ∅}) ⋅ 𝜒{𝑆 ∩ �̄�𝑁𝑓 (𝑐)∕𝑐 = ∅}.

Proof. ⇒: If |𝑀𝐺
𝑓
𝑣 (𝑔𝑆 )| ≥ 𝜅, we have a potential group 𝑐′ ∶=𝑀𝐺

𝑓
𝑣 (𝑔𝑆 ) in 𝐺𝑓 which naturally satisfies condition (1). For condition 

(2), if it doesn’t satisfy it, i.e., there is a node in 𝑐′ whose neighbor 𝑢 in 𝐺𝑓 with same label as 𝑢 not belonging to 𝑐′ can reach a seed 
node reversely over 𝑔, then the group 𝑐′ ∪ {𝑢} is also a potential group in 𝐺𝑓 (𝑔𝑆 ) and it’s contradictory since 𝑐′ is a maximal potential 
group.

⇐: If there exists a potential group 𝑐′ (𝑣 ∈ 𝑐′) in 𝐺𝑓 with size at least 𝜅 satisfying both the conditions, then since 𝑆 ∩ �̄�𝑢 ≠ ∅ for 
each node 𝑢 ∈ 𝑐′ and we have 𝑐′ ⊆ 𝑔𝑆 , i.e., 𝑐′ is also a potential group in 𝐺𝑓 (𝑔𝑆 ) and then |𝑀𝐺

𝑓
𝑣 (𝑔𝑆 )| ≥ 𝜅. □

Lemma 3. There is at most one potential group 𝑐 (𝑣 ∈ 𝑐) in 𝐺𝑓 with size at least 𝜅 satisfying both the conditions in Lemma 2, i.e., we have 
the lemma as the following logical equation:⋁

𝑐∈𝐂𝑣𝜅 [𝐺𝑓 ]
(
∏
𝑢∈𝑐

𝜒{𝑆 ∩ �̄�{𝑢} ≠ ∅}) ⋅ 𝜒{𝑆 ∩ �̄�𝑁𝑓 (𝑐)∕𝑐 = ∅} =
∑

𝑐∈𝐂𝑣𝜅 [𝐺𝑓 ]
(
∏
𝑢∈𝑐

𝜒{𝑆 ∩ �̄�{𝑢} ≠ ∅}) ⋅ 𝜒{𝑆 ∩ �̄�𝑁𝑓 (𝑐)∕𝑐 = ∅}.

Proof. Given any two potential groups 𝑐1, 𝑐2 in 𝐂𝑣𝜅 [𝐺𝑓 ] satisfying both the conditions in Lemma 2, since 𝑐1 and 𝑐2 both are connected 
to the node 𝑣 in 𝐺𝑓 with same label as 𝑣, then 𝑐1 ∪ 𝑐2 also forms a potential group in 𝐺𝑓 . If 𝑐1 ≠ 𝑐2, we have 𝑐1 − 𝑐2 ≠ ∅ or 𝑐2 − 𝑐1 ≠ ∅. 
Let’s suppose 𝑐1 − 𝑐2 ≠ ∅, then 𝑐1 − 𝑐2 is also connected with 𝑐2 in 𝐺𝑓 , i.e., there must be a node 𝑢1(𝑢1 ∈ 𝑐1 − 𝑐2) who has a neighbor 
𝑢2 (𝑢2 ∈ 𝑐2), hence 𝑢1 ∈𝑁𝑓 ({𝑢2})∕𝑐2 and 𝑢1 ∈ 𝑐1. Since 𝑆 ∩ �̄�𝑁𝑓 (𝑐2)∕𝑐2 = ∅ by condition (2) for 𝑐2, 𝑆 ∩ �̄�{𝑢1} = ∅ which is contradictorily 
by condition (1) for 𝑐1. So 𝑐1 must be equal to 𝑐2. □

Theorem 5. 𝜎𝜅 (𝑆) = 𝜏𝐸(𝜉𝑆 ).

Proof. By the Lemma 1, 2, 3, we have

𝜎𝜅 (𝑆) =
∑
𝑔∈𝐺

𝑃 𝑟[𝑔]
∑
𝑣∈𝑉

𝜒{|𝑀𝐺𝑓𝑣 (𝑔𝑆 )| ≥ 𝜅}
=
∑
𝑔∈𝐺

𝑃 𝑟[𝑔]
∑
𝑣∈𝑉

∑
𝑐∈𝐂𝑣𝜅 [𝐺𝑓 ]

(
∏
𝑢∈𝑐

𝜒{𝑆 ∩ �̄�{𝑢} ≠ ∅}) ⋅ 𝜒{𝑆 ∩ �̄�𝑁𝑓 (𝑐)∕𝑐 = ∅}

∑
𝑔∈𝐺

𝑃 𝑟[𝑔]
∑
𝑣∈𝑉

∑
𝑐∈𝐂𝜅 [𝐺𝑓 ]

𝜒{𝑣 ∈ 𝑐}(
∏
𝑢∈𝑐

𝜒{𝑆 ∩ �̄�{𝑢} ≠ ∅}) ⋅ 𝜒{𝑆 ∩ �̄�𝑁𝑓 (𝑐)∕𝑐 = ∅}

∑
𝑔∈𝐺

𝑃 𝑟[𝑔]
∑

𝑐∈𝐂𝜅 [𝐺𝑓 ]
((
∏
𝑢∈𝑐

𝜒{𝑆 ∩ �̄�{𝑢} ≠ ∅}) ⋅ 𝜒{𝑆 ∩ �̄�𝑁𝑓 (𝑐)∕𝑐 = ∅})
∑
𝑣∈𝑉 𝑙

𝜒{𝑣 ∈ 𝑐}

∑ ∑
𝑃𝑟[𝑔]|𝑐|((∏𝜒{𝑆 ∩ �̄� ≠ ∅}) ⋅ 𝜒{𝑆 ∩ �̄� 𝑓 = ∅})
213

𝑔∈𝐺 𝑐∈𝐂𝜅 [𝐺𝑓 ] 𝑢∈𝑐
{𝑢} 𝑁 (𝑐)∕𝑐
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=𝜏𝐸(𝜉𝑆 )

We proved it. □

Let ℍ = {1, 2, ⋯ , 𝜆} be the set of 𝜅-JRRH sampled 𝜆 times independently. Mark 𝐹ℍ(𝑆) ∶=
∑𝜆
𝑖 𝜉𝑆 (𝑖), then 𝐹ℍ(𝑆)|ℍ| is an unbiased 

estimation of the expectation of 𝜉𝑆 . Hence �̄�𝜅 (𝑆) ∶= 𝜏
𝐹ℍ(𝑆)|ℍ| is an estimation for 𝜎𝜅 (𝑆). Nextly we will analyze the error gap between 

the incomputable 𝜎𝜅 and computable �̄�𝜅 in the following theorem. To prove it, we first introduce the Chernoff Bounds [23] as follows.

Lemma 4. Let 𝑋 =
∑𝜆
𝑖=1𝑋𝑖 and 𝜇 =𝐸(𝑋) where 𝑋1, 𝑋2, ⋯ , 𝑋𝜆 are independent bernoulli random variables. For any 𝜖 ∈ (0, 1), we have

𝑃𝑟{𝑋 − 𝜇 ≥ 𝜖𝜇} ≤ 𝑒−
𝜖2𝜇
2+𝜖 , (1)

𝑃𝑟{𝑋 − 𝜇 ≤ −𝜖𝜇} ≤ 𝑒−
𝜖2𝜇
2 . (2)

Theorem 6. If 𝜆 ≥ −𝜏
𝜖2𝜅

⋅𝑚𝑖𝑛{ln𝑥2+𝜖 , ln (1 − 𝛿 − 𝑥)2}, we have 𝑃𝑟{|�̄�𝜅 − 𝜎𝜅 | ≤ 𝜖𝜎𝜅} ≥ 𝛿, where 0 ≪𝛿 < 1, 0 < 𝑥 < 1 − 𝛿 and 0 < 𝜖 ≪ 1.

Proof. Let 𝑋𝑖 = 𝜉𝑆 (𝑖). We have 𝑋 =
∑𝜆
𝑖=1𝑋𝑖 = 𝐹ℍ(𝑆) =

𝜆�̄�𝜅 (𝑆)
𝜏

, and 𝜇 =𝐸(𝑋) = 𝜆 ⋅𝐸(𝜉𝑆 ) =
𝜆𝜎𝜅 (𝑆)
𝜏

. By Equation (1) in Lemma 4, since 
𝜆 ≥ −𝜏(2+𝜖) ln𝑥

𝜖2𝜅
, we can ensure the lower bound of objective is 𝜅 since it is the same with all 𝜎𝜅 (⋅) < 𝜅. By default, we add extra 𝜅

full connected nodes into 𝐺𝑓 with the same label, and all of them can be influenced by any node in 𝑉 definitely. So we replace the 
objective by 𝜎𝜅 (⋅) ∶= 𝜎𝜅 (⋅) + 𝜅 to ensure the lower bound of objective to be 𝜅, such operation won’t change the order of objective’s 
value for all sets. We ensure that 𝜎𝑘 ≥ 𝜅, and then have

𝑃𝑟{
𝜆�̄�𝜅 (𝑆)
𝜏

−
𝜆𝜎𝜅 (𝑆)
𝜏

≥ 𝜖 ⋅
𝜆𝜎𝜅 (𝑆)
𝜏

} = 𝑃𝑟{�̄�𝜅 − 𝜎𝜅 ≥ 𝜖𝜎𝜅} ≤ 𝑒
− 𝜖2𝜆𝜎𝜅
𝜏(2+𝜖) ≤ 𝑒

− 𝜖2𝜆𝜅
𝜏(2+𝜖) ≤ 𝑥.

By Equation (2) in Lemma 4, since 𝜆 ≥ −ln (1−𝛿−𝑥)𝜏
𝜖2𝜅

, we have

𝑃𝑟{
𝜆�̄�𝜅 (𝑆)
𝜏

−
𝜆𝜎𝜅 (𝑆)
𝜏

≤ −𝜖 ⋅
𝜆𝜎𝜅 (𝑆)
𝜏

} = 𝑃𝑟{�̄�𝜅 − 𝜎𝜅 ≤ −𝜖𝜎𝜅} ≤ 𝑒
− 𝜖2𝜆𝜎𝜅

2𝜏) ≤ 𝑒−
𝜖2𝜆𝜅
2𝜏 ≤ 1 − 𝛿 − 𝑥.

Therefore, 𝑃𝑟{|�̄�𝜅 − 𝜎𝜅 | ≤ 𝜖𝜎𝜅} = 1 − 𝑃𝑟{|�̄�𝜅 − 𝜎𝜅 | > 𝜖𝜎𝜅} = 1 − (𝑃𝑟{�̄�𝜅 − 𝜎𝜅 > 𝜖𝜎𝜅} + 𝑃𝑟{�̄�𝜅 − 𝜎𝜅 < −𝜖𝜎𝜅}) ≥ 1 − (𝑥 + 1 − 𝛿 − 𝑥) = 𝛿. □

By the Theorem 6, if we sample enough 𝜅-JRRH samples, then we can get an accurate estimation for the objective with high 
confidence. Further, to reduce the cost of sampling as possible, we discuss the lower bound 𝜆𝑙(𝜖, 𝛿) of the samples number 𝜆 which 
can ensure the ratio of error 𝜖 and the confidence 𝛿 in Theorem 6, i.e., solving the problem

𝑥∗ ∶= 𝑎𝑟𝑔𝑚𝑎𝑥{𝑓1(𝑥)|𝑥 ∈ (0,1 − 𝛿)}, 𝑓1(𝑥) ∶=𝑚𝑖𝑛{ln𝑥2+𝜖 , ln (1 − 𝛿 − 𝑥)2}.

Since logarithmic functions are monotonically increasing, we have 𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥{𝑓2(𝑥)|𝑥 ∈ (0, 1 − 𝛿)}, where 𝑓2(𝑥) ∶= 𝑚𝑖𝑛{𝑥2+𝜖 ,
(1 − 𝛿 − 𝑥)2}. We draw 𝑓2(𝑥) into coordinate system as shown in Fig. 7 and 𝑥∗2+𝜖 = (1 − 𝛿 − 𝑥∗)2 which is hard to be solved analytically, 
but we can solve a suboptimal 𝑥⋆ where 𝑥⋆2 = (1 − 𝛿 − 𝑥⋆)2 and we have 𝑥⋆ = 1−𝛿

2 . Hence we can get an analytical suboptimal lower 
bound 𝜆⋆

𝑙
(𝜖, 𝛿) = −𝜏

𝜖2𝜅
𝑓1(𝑥⋆) =

2𝜏(ln 2−ln(1−𝛿))
𝜖2𝜅

. Now, we have solved the problem of estimation for the objective. Nextly we design 
algorithms to solve the optimal problem of selecting seeds.

6. Algorithms

Instead of solving the problem directly, by the estimation method above, we have 𝜎𝜅 ≈ �̄�𝜅 when the total count 𝜆 of samples ℍ is 
large enough. Therefore we consider solving the maximization problem of �̄�𝜅 and further the maximization problem of 𝐹ℍ(⋅), i.e.,

𝑆⋆ ∶= 𝑎𝑟𝑔𝑚𝑎𝑥𝑆∈𝑉 ,|𝑆|=𝑘𝐹ℍ(𝑆). (3)

In Theorem 7, we give the gap between a solution 𝑆+ provided by solving problem (3) and the optimal 𝑆∗ for the original 
problem.

Theorem 7. When 𝜆 ≥ 𝜆𝑙(
𝜖

2 , 𝛿), we have 𝜎𝜅 (𝑆+) ≥ (1 − 𝜖) 𝐹ℍ(𝑆
+)

𝐹ℍ(𝑆⋆)
𝜎𝜅 (𝑆∗) with a probability at least 2𝛿 − 1.

Proof. Since 𝑆⋆ is an optimal solution for problem (3), we have �̄�𝜅(𝑆⋆) ≥ �̄�𝜅 (𝑆∗) and hence 𝐹ℍ(𝑆
+)

𝐹ℍ(𝑆⋆)
�̄�𝜅 (𝑆⋆) = �̄�𝜅 (𝑆+) ≥ 𝐹ℍ(𝑆+)

𝐹ℍ(𝑆⋆)
�̄�𝜅 (𝑆∗). 

By Theorem 6, if 𝜆 ≥ 𝜆𝑙(
𝜖

2−𝜖 , 𝛿), we have �̄�𝜅 (𝑆∗) ≥ (1 − 𝜖

2−𝜖 )𝜎𝜅 (𝑆
∗) = 2(1−𝜖)

2−𝜖 𝜎𝜅 (𝑆
∗) and 𝜎(𝑆+) ≥ 1

1+ 𝜖
2−𝜖
�̄�𝜅 (𝑆+) = 2−𝜖

2 �̄�𝜅 (𝑆
+) with the union 
214

probability is at least 2𝛿 − 1. We proved it. □
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Fig. 7. The 𝑓2(𝑥) in coordinate system.

By Theorem 7, if we sample enough 𝜅-JRRTH samples, by solving the maximization problem of 𝐹ℍ(𝑆), we can get a high quality 
solution with high confidence for the original problem. So nextly we consider how to solve the maximization problem of 𝐹ℍ(𝑆). 
Unfortunately, we can prove this problem is still 𝑁𝑃 -hard.

Theorem 8. The maximization problem for 𝐹ℍ(⋅) in Equation (3) is NP-hard.

Proof. We can easily prove it by a special case with ℍ∗ in which for each hypergraph  the hyperedges are repeated to be 𝑒 and 
𝑉 = 𝑉 . We have 𝐹ℍ∗ (𝑆) =

∑
∈ℍ∗ 𝜒{𝑆 ∩ 𝑒 ≠ ∅} and it equals to the problem of to find a set of 𝑆 with 𝑘 nodes that maximizes the 

number of sets hit by 𝑆 in {𝑒 | ∈ℍ∗}, which is a variant of 𝑁𝑃 -hard set cover problem. □

The importance of submodularity in machine learning and data mining applications has been demonstrated in many literatures, 
but we still can’t guarantee that 𝐹ℍ(𝑆) is submodular since we can give a simple counterexample with ℍ = {1, 2} where 1 =
{{1}, {2, 3}, }, 2 = {{1}, {3}}. For non-submodularity maximization problem, denoting it by a difference of two submodular functions 
is a widely used strategy. So nextly, we firstly discuss how to differentiate the objective into a difference of two submodularities, and 
secondly we propose a heuristic algorithm based on the greedy hill-climbing strategy.

6.1. Difference of two submodularities

In this subsection, we will convert the objective function to a difference of two submodular functions. We firstly construct a 
following set function based on a given hypergraph .

𝑔 (𝑆) =

{
deg (𝑆) if deg (𝑆) < |𝐸 |,
deg (𝑆) − 1 if deg (𝑆) = |𝐸 |.

Nextly we prove that the set functions of 𝑔 (⋅) and deg (𝑆)(⋅) have following properties:

Lemma 5. 𝑔 (⋅) and 𝑑𝑒𝑔 (⋅) are non-negative, non-decreasing and submodular.

Proof. It’s obviously that 𝑔 (⋅) and 𝑑𝑒𝑔 (⋅) are non-negative and non-decreasing. Nextly we prove the submodularity. Let Δ𝑣 deg (𝑆)
and Δ𝑣𝑔 (𝑆) correspond to the marginal gains of adding a node 𝑣 into 𝑆 for deg (⋅) and 𝑔 (⋅) respectively. Considering any sets 𝑆1 ⊆

𝑆2 ∈ 2𝑉 and node 𝑣 ∈ 𝑉 ∕𝑆1, since 𝐷 (𝑆1) ⊆ 𝐷 (𝑆2), we have Δ𝑣 deg (𝑆1) = |𝐷 ({𝑢})∕𝐷 (𝑆1)| ≥ Δ𝑣 deg (𝑆2) = |𝐷 ({𝑢})∕𝐷 (𝑆2)|. 
So deg (⋅) is submodular. We discuss Δ𝑣𝑔 (𝑆1) and Δ𝑣𝑔 (𝑆2) as follows:

• When deg (𝑆1) < |𝐸 | and deg (𝑆1 ∪ {𝑣}) < |𝐸 |, we have Δ𝑣𝑔 (𝑆1) =Δ𝑣 deg (𝑆1), and Δ𝑣𝑔 (𝑆2) ∈ {Δ𝑣 deg (𝑆2), Δ𝑣 deg (𝑆2) −
1, 0}. So Δ𝑣𝑔 (𝑆2) ≤Δ𝑣 deg (𝑆2) and hence Δ𝑣𝑔 (𝑆2) ≤Δ𝑣𝑔 (𝑆1).

• When deg (𝑆1) < |𝐸 | and deg (𝑆1 ∪ {𝑣}) = |𝐸 |, we have Δ𝑣𝑔 (𝑆1) =Δ𝑣 deg (𝑆1) −1 ≥ 0, and Δ𝑣𝑔 (𝑆2) ∈ {Δ𝑣 deg (𝑆2) −1, 0}. 
Since Δ𝑣 deg (𝑆2) − 1 ≤Δ𝑣 deg (𝑆1) − 1, hence Δ𝑣𝑔 (𝑆2) ≤Δ𝑣𝑔 (𝑆1).

• When deg (𝑆1) = |𝐸 |, we have Δ𝑣𝑔 (𝑆2) =Δ𝑣𝑔 (𝑆1) = 0.
215

Therefore, we always have Δ𝑣𝑔 (𝑆2) ≤Δ𝑣𝑔 (𝑆1). 𝑔 (𝑆)(⋅) is submodular too. □
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Let ̄ be the new hypergraph by adding an extra hyperedge 𝑉 𝐶


into 𝐸 . Then according to Lemma 5, we can construct following 
two non-negative, non-decreasing and submodular set functions:

𝐹ℍ(𝑆) ∶=
∑
∈ℍ

(𝑑𝑒𝑔 (𝑆) + 𝑔̄ (𝑆)), 𝐹ℍ(𝑆) ∶=
∑
∈ℍ

(𝑔 (𝑆) + deḡ (𝑆)).

Until now, we finally find a difference of submodularities for 𝐹ℍ. To prove this theorem, mark the indicator set function 𝐼 (𝑆) ∶=
𝜒{deg (𝑆) = |𝐸 (𝑆)|} and we introduce Lemma 6, 7.

Lemma 6. 𝐼 (⋅) = deg (⋅) − 𝑔 (⋅).

Proof. We discuss the left and right values in the equation as follows: (1) when 𝐼 (𝑆) = 1, we have that 𝑔 (𝑆) = deg (𝑆) − 1 and 
deg (𝑆) − 𝑔 (𝑆) = 1; (2) when 𝐼 (𝑆) = 0, i.e., deg (𝑆) <𝐸 (𝑆), we have that 𝑔 (𝑆) = deg (𝑆), deg (𝑆) − 𝑔 (𝑆) = 0. □

Lemma 7. 𝜉𝑆 () = 𝐼 (𝑆) − 𝐼̄ (𝑆).

Proof. We discuss the values of left and right in the equation as follows:

• When 𝜉𝑆 () = 1, we have deg (𝑆) = |𝐸 (𝑆)| and 𝑆 ⊆ 𝑉 . Hence 𝑆 ∩𝑉 𝐶


= ∅ and deḡ (𝑆) = |𝐸̄ | −1. So 𝐼 (𝑆) = 1 and 𝐼̄ (𝑆) = 0. 
i.e., 𝜉𝑆 () = 𝐼 (𝑆) − 𝐼̄ (𝑆) = 1.

• When 𝜉𝑆 () = 0, we have deg (𝑆) < |𝐸 (𝑆)| or 𝑆 ⊈ 𝑉 . If deg (𝑆) < |𝐸 (𝑆)|, we have that deḡ (𝑆) ≤ | deg (𝑆)| + 1 < |𝐸̄ |
and 𝐼 (𝑆) = 𝐼̄ (𝑆) = 0. i.e., 𝜉𝑆 () = 𝐼 (𝑆) − 𝐼̄ (𝑆) = 0. Else if deg (𝑆) = |𝐸 (𝑆)|, we have that 𝑆 ⊈ 𝑉 , hence 𝑆 ∩ 𝑉 𝐶


≠ ∅ and 

deḡ (𝑆) = |𝐸̄ |. Then we have that 𝐼 (𝑆) = 𝐼̄ (𝑆) = 1 which means 𝜉𝑆 () = 𝐼 (𝑆) − 𝐼̄ (𝑆) = 0.

Then we have that the value of left always equals to the left. □

Theorem 9. 𝐹ℍ = 𝐹ℍ − 𝐹ℍ, where 𝐹ℍ and 𝐹ℍ are non-negative, non-decreasing and submodular.

Proof. By Lemma 6, 7, we have

𝐹ℍ(𝑆) =
∑
∈ℍ

𝜉 (𝑆)

=
∑
∈ℍ

𝐼 (𝑆) − 𝐼̄ (𝑆)

=
∑
∈ℍ

deg (𝑆) − 𝑔 (𝑆) − (deḡ (𝑆) − 𝑔̄ (𝑆))

=
∑
∈ℍ

deg (𝑆) + 𝑔̄ (𝑆) − (deḡ (𝑆) + 𝑔 (𝑆))

=
∑
∈ℍ

deg (𝑆) + 𝑔̄ (𝑆) −
∑
∈ℍ

deḡ (𝑆) + 𝑔 (𝑆)

=𝐹ℍ(𝑆) − 𝐹ℍ(𝑆)

We proved it. □

Based on Theorem 9, we have that the maximization problem of 𝐹ℍ equals to minimizing 𝐹ℍ(𝑆) − 𝐹ℍ(𝑆). To solve such problem, 
there are several alternative approaches such as the convex-concave procedure [37] on the Lovász extensions of 𝑓 and 𝑔. Besides, 
Iyer et al. proposed three algorithms [16] for approximate minimization of the difference between two submodular functions, i.e., 
the following optimization problem: 𝑚𝑖𝑛𝑇⊆𝑁 [𝑓 (𝑇 ) − 𝑔(𝑇 )], given two submodular set functions 𝑓 and 𝑔, and the ground set 𝑁 . Here 
we adopt their Modular-Modular procedure (MMP) but change it lightly to adapt the constraint of knapsack |𝑇 | = 𝑘 as shown in 
Algorithm 2. The idea of Modular-Modular procedure algorithm is to iteratively solve a minimization problem of the difference 

Algorithm 2: k-knapsack-Modular-Modular (k-ModMod) procedure.

1 𝑇 0 = ∅; 𝑡 ← 0;
2 while not converged (i.e., (𝑇 𝑡+1 = 𝑇 𝑡)) do

3 Choose a permutation 𝜋𝑡 whose chain contains the set 𝑇 𝑡 ;
4 𝑇 𝑡+1 ∶= argmin{|𝑇 |=𝑘,𝑇∈𝑁}[𝑚

𝑓

𝑇 𝑡
(𝑇 ) − ℎ𝑔

𝑇 𝑡 ,𝜋𝑡
(𝑇 )];

5 𝑡 ← 𝑡 + 1;

6 return 𝑇 𝑡
216

by replacing 𝑓 by its modular upper bound 𝑚𝑓
𝑇 𝑡

and 𝑔 by its modular lower upper bound ℎ𝑔
𝑇 𝑡,𝜋𝑡

respectively, and the adapted 



Information Sciences 629 (2023) 204–221G. Rao, D. Li, Y. Wang et al.

Table 1

The datasets.

Network #nodes #edges direct #vertex in 
𝑓

3 #vertex in 
𝑓

10

Facebook 4.0K 0.8M False 9.8K 0.8K
Twitter 81.3K 17.6M True 2.1M 10K
Gplus 1.0M 136.7M True 10.2M 1.1M

k-knapsack-Modular-Modular procedure algorithm is guaranteed to monotonically decrease the objective at every iteration and 
converge to a local minima. Since in each iteration, minimizing a modular set function with the constant constraint of set size can be 
done in 𝑂(|𝑁|), the iteration is extremely easy.

6.2. Heuristic algorithm

Here, we consider the general greedy hill-climbing algorithm to solve the problem by choosing seeds with maximal marginal 
gain for the objective one by one. However, such short-sighted strategy may lead to a bad result since there is often a problematic 
situation where nodes provide same marginal gains such as zero but different long-term delayed gain for objective 𝐹ℍ. To show this 
problem, we still use the simple example with ℍ = {1, 2} where 1 = {{1}, {2, 3}}, 2 = {{1}, {2}}. Suppose that we need to choose 
two seeds. By the greedy hill-climbing strategy, in the first step, all nodes provide zero marginal gain for the objective. If we choose 
node 3, we will get a bad solution {1, 3}, but if we choose node 2 or 1 in the first step, it will lead to the best solution {1, 2}. So 
based on this idea, we need to design a weight to distinguish each node’s long-term delayed gain for the objective. Note that 𝜉𝑆 ()
is computed by 𝜒{𝑆 ⊆ 𝑉} ⋅ 𝜒{𝑑𝑒𝑔 (𝑆) = |𝐸 |}. Therefore, in order to add a node to provide more gain for the objective in future, 
we need 𝑣 to be included in: 1) as many sets of 𝑉 as possible; 2) as many subsets of 𝐸 that have no intersection with the previous 
selected seeds 𝑆 as possible. Based on such heuristic ideas, we distinguish node 𝑣’s long-term delayed gain by computing the weight 
𝑊𝑆 (𝑣) ∶=

∑
∈ℍ 𝜒{𝑣 ∈ 𝑉} ⋅ (𝑑𝑒𝑔 ({𝑣}∪{𝑆})−𝑑𝑒𝑔 ({𝑆})|𝐸 | . By combining the immediate marginal gain and long-term delayed gain for the 

objective, we employ the adaptive greedy hill-climbing algorithm as shown in Algorithm 3 with the time complexity of 𝑂(𝑘|𝑉 ||ℍ|). 
Back to the example above, by Algorithm 3, in the first step we have node 1 and 2 with the weight of long-term delayed gain 1 and 

Algorithm 3: AG(ℍ, 𝑘).

1 𝑆 ← ∅;
2 for 𝑞 from 1 to 𝑘 do

// immediate marginal gain firstly.
3 Get all nodes 𝑆𝑞 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑠∈𝑉 𝐹ℍ(𝑆 ∪ {𝑣}) − 𝐹ℍ(𝑆);

// long-term delayed gain secondly.
4 Get a node 𝑠𝑞 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑣∈𝑆𝑞𝑊𝑆 (𝑣);
5 Let 𝑆← 𝑆 ∪ {𝑠𝑞};

6 return 𝑆 as the seed set

node 3 with the lower weight of long-term delayed gain 0.5, thereby this algorithm will lead to the best result.

7. Experiments

In this section, based on 3 real-world labeled datasets1 (facebook, twitter, gplus) shown in Table 1, we conduct extensive 
experiments to evaluate the performance of the methods we proposed above for both time efficiency and effectiveness. All of our 
codes are written in c++ with coding optimization, and run on a linux server with 12 cores, 24 threads, 2.4 GHz CPU and 64 GB
RAM.

7.1. Experiment preparation

To get the influence graph of the IC model we used for information diffusion, for the directed graph datasets of twitter and gplus, 
we set an influence edge 𝑒𝑢𝑣 if user 𝑣 follows user 𝑢, and for the undirected graph datasets of facebook, we set two influence edges 𝑒𝑢𝑣
and 𝑒𝑣𝑢 if user 𝑣 and 𝑢 are friends. As the general setting in prior works for IC model, for each influence edge 𝑒𝑢𝑣 , we set its influence 
probability 𝑝𝑖𝑢𝑣 to 1

𝑑𝑒𝑔𝑖𝑛(𝑣)
where 𝑑𝑒𝑔𝑖𝑛(𝑣) is the in-going degree of 𝑣 in 𝐺𝑖. We randomly label nodes uniformly from 100 labels and 

use 𝛾2(𝑢, 𝑣) to build the faith edge for two nodes 𝑢 and 𝑣, i.e., 𝑢 and 𝑣 have faith into one group iff the number of hops between them 
is no more than 2 in the social network. Then we get the corresponding graph 𝑓𝜅 in which each vertex corresponds to a possible 
group satisfying the requirement size of variable 𝜅 from 3 and 10. We compare our algorithms with following baselines:

• Random: Get 𝑘 seeds randomly from the nodes set 𝑉 by 100 times and then chose the best one.
217

1 http://snap .stanford .edu /data/.
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Fig. 8. Expected 3(10)-grouping joining influence achieved by all comparison algorithms on the three real-world datasets.

• IM: Choose 𝑘 seeds provided by the algorithm [32] which aims to solve the influence maximization problem.
• MC-GG: Use the mean of many Monte Carlo simulations of dynamic diffusion-group to estimate expectation (i.e., the objective) 

for given seeds and hence select seeds one by one through the general greedy hill-climbing algorithm.
• S-GG: Firstly sample enough 𝜅-JRRHs, and secondly select seeds one by one as the general greedily climbing algorithm by 

estimating the objective for given seeds through the computation based on these 𝜅-JRRHs.
• S-AG: Sample enough 𝜅-JRRHs to estimate the objective but select seeds one by one through the adaptive greedily climbing, i.e., 

Algorithm 3 we proposed.
• k-ModMod: Use Algorithm 2 we proposed by a local descending searching algorithm for the maximization problem of the 

difference of two submodular functions.

7.2. Effectiveness

In this part, by running these comparison algorithms, we will compare and analyze the effectiveness for 𝜅-grouping joining 
influence, i.e., the quality of seeds the comparison algorithms provide. Notice that in these comparison algorithms, we need firstly 
sample certain number of enough 𝜅-JRRHs in algorithm S-GG, S-AG and k-ModMod, and then following the theory result in 
Theorem 7, here we fix the samples number to be computable 𝜆⋆

𝑙
(0.05, 0.99) by setting 𝜖 = 0.1, 𝛿 = 0.99 to ensure a high confidence and 

accuracy for the objective estimation and hence a solution with high quality. For algorithm MC-GG of Monte Carlo simulations, we 
set the number of simulations to be 10000 which is large enough to provide a high estimation precision. To evaluate and distinguish 
the effectiveness of the solutions provided by different algorithms, we count the mean of total number of members over all groups 
that meet the condition with size at least 𝜅 in 10000 Monte Carlo simulations. We compare the algorithms with variable seeds budget 
𝑘 from the set {10, 20, 30, 40, 50}.

In Fig. 8, we firstly plot the expected 3-grouping joining influence on all three networks with the minimum number requirement 
for partners into a group to be 2, i.e., 𝜅 = 3 and then plot the expected 10-grouping joining influence on all three networks with 
𝜅 = 10. Totally, we have that the expected grouping joining influences with the seeds provided by different algorithms satisfy 
following comparisons: k-ModMod>S-AG>S-GG≈MC-GG>IM>Random. k-ModMod performs better than S-AG in most situations 
but not significantly in some situations such as in Facebook with 𝜅 = 10, 𝑘 = 40, and Gplus with 𝜅 = 10, 𝑘 = 10, 20. Specifically, the 
expected grouping joining influences obtained by the general greedily climbing algorithm are very close whenever the objective is 
estimated by the 𝜅-JRRHs or the Monte Carlo simulations. It proves that the estimation based on the 𝜅-JRRHs we propose is not 
weaker than the traditional Monte Carlo in terms of precision. We also notice that the adaptive greedily climbing algorithm improves 
218

the grouping joining influence significantly in all datasets and it indeed has an advantage to avoid some short-sighted choices in the 



Information Sciences 629 (2023) 204–221G. Rao, D. Li, Y. Wang et al.

Fig. 9. The running time of selecting seeds achieved by three 𝜅-JRRHs based algorithms.

greedily climbing. It is no accident that IM algorithm is just better than the Random but worse significantly than the method we 
proposed since IM algorithm aims to solve the breath of influence spread without considering the grouping constraint. It may cause 
that many nodes can be influenced but can’t find enough like-mind partners.

7.3. Time efficiency

In this part, we will analyze the time efficiency for our algorithms and estimation method based on 𝜅-JRRH respectively. Notice 
that these algorithms k-ModMod, S-GG and S-AG are based on the objective estimation of sampling certain number of 𝜅-JRRHs, 
hence there are two parts to decide the time efficiency. The first part is the process of sampling 𝜅-JRRHs and it’s related to the 
number of samples 𝜆 and the expected time cost 𝑡𝑠 in one random sampling process, i.e., the computational complexity in 𝜅-JRRHs 
sampling is 𝑂(𝜆 ⋅ 𝑡𝑠). The second part is the process of selecting seeds. Especially in algorithm k-ModMod, since the time cost in each 
iteration is 𝑂(|𝑉 |), the total computational complexity of selecting seeds is 𝑂(𝑡𝑖 ⋅ |𝑉 |) where 𝑡𝑖 is the number of converge iterations of 
searching. Therefore, in this part of simulation, we firstly compare the time efficiency in seeds selecting of these three 𝜅-JRRH based 
algorithms under the same samples. Notice that in the estimation method that 𝜅-JRRH uses, different from Monte Carlo in which we 
need repeat simulations once seeds changed, we just need to collect them once and then directly use them to compute the estimation 
for any given seeds. So in order to compare the time efficiency of these two objective estimation methods, we accumulate the time 
cost in both sampling and estimation computation while adding a lot of random seeds sets constantly.

Fig. 9 plots the running time of the selected seeds in three 𝜅-JRRH based algorithms k-ModMod, S-GG and S-AG under the same 
samples with 𝜆⋆

𝑙
(0.05, 0.99) and 𝜅 = 3. There is no doubt that the running time of both greedy climbing algorithms varies nearly 

linearly with the budget 𝑘, and the adaptive one we propose costs nearly more 50% time than the general one since there is an 
extra step of weight computation in each loop. For K-ModMod, we find that it’s not positively correlated with the budget 𝑘, such 
as the situation when 𝑘 = 40 in 𝐺𝑝𝑙𝑢𝑠 and 𝑘 = 50 in Twitter. The reason is that the algorithm is not a strict incremental algorithm in 
𝑂(𝑘). Although in each iteration, there runs a linearly complexity algorithm of minimizing a modular function with the knapsack 
constraint of set size 𝑘, the running time may not be positively correlated with the budget 𝑘. Specially we notice that our algorithms 
seem to run slowly on Twitter and Gplus, it’s because the number of samples is significantly enlarged in larger scale networks under 
our setting of 𝜖 = 0.1, 𝛿 = 0.99. Actually, it’s a conservative setting to ensure the estimation precision and we can reduce the number 
of samples to an acceptable range to avoid such intensive computation.

Fig. 10 plots the cumulative running time to estimate the objective for given seeds sets achieved by Monte Carlo and 𝜅-JRRHs 
respectively. We compare these two methods by setting the number of Monte Carlo simulations to be 10k for each estimation 
of given seeds set and the number of sampling 10-JRRHs to be 10M. In Twitter and Gplus, the time cost of estimation in Monte 
Carlo increases significantly comparing with the computation of 𝜅-JRRHs. Overall from the figure, we can see that the time cost 
of computation based on 𝜅-JRRHs is negligible comparing to the heaviest part of 𝜅-JRRHs sampling. Specifically, on large scale 
networks like Twitter and Gplus, in the long term the value of objective will be frequently needed in most algorithms such as the 
greedy hill-climbing. Comparing to Monte Carlo simulations, our method of sampling 𝜅-JRRHs can significantly reduce the total cost 
in objective estimation and make seeds selecting algorithms more feasible on larger scale networks.

8. Conclusions

In this paper, we investigate the marketing for the business model of group buying over social influence. We formulate it into 
the problem of choosing budgeted seeds to maximize the influence with grouping constraint based on a diffusion-group model 
we propose. We summarize the properties of this problem with the strict theoretical analysis and propose a method of sampling 
hypergraphs to estimate the objective since its computation is #P-hard. Based on the estimation method we propose, we design 
two algorithms: the first one is a local descending search by transforming the objective function to a difference of two submodular 
functions, and the second one is an adaptive greedy hill-climbing to avoid short-sighted problem in general hill-climbing. At last, 
219

extensive experiments conducted on real-world datasets show that our methods perform well.
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Fig. 10. The cumulative running time to estimation the objective for given seeds sets achieved by Monte Carlo and 𝜅-JRRHs respectively.
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