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Abstract-Compressive sensing over graphs has recently at
tracted great research attentions, which takes limited num
ber end-to-end measurements along paths (walks) to recover
sparse vectors representing link/node properties. Unlike tradi
tional compressive sensing, the along-path measurements rule
out the freedom of random sampling, which introduces path
constraints to the measurement matrix. The constraint makes
explicit analysis of recovery performance difficult. Only for
undirected graphs, early results showed that O(klog(n)) end
to-end measurements taken by random walks are sufficient to
recover k-sparse edge vector. However, the problem becomes
more difficult when directed graphs are considered, because of
the easy state absorbing and the difficulty of evaluating the
stationary distribution. But digraphs inherently model many net
work systems. In this paper, particularly for strongly connected
digraphs with low node degrees, we presents bounds for the
stationary distribution of random walks, and present deliberative
proofs which put forward that O(klog(n)) path measurements
are sufficient to recover k-sparse edge vectors. Further more,
because urban road networks are exactly strongly connected,
low degree digraphs, we designed efficient recovery methods to
estimate road delays by a small number of probing cars. Although
the road delay vector is actually not sparse, we leverage the
empirical non-congested road delays as references and develop
an algorithm which divide the problem to iteratively recover
several k-sparse vectors. Simulation results show that when less
than 10% edges are congested, more than 90% congestion states
can be recovered correctly by 10% measurements.

I. INTRODUCTION

When networks become large in scale, it will be costly
and operationally difficult for users to monitor the properties
of all links. For inefficiency of monitoring each link, users
generally rely on external end-to-end measurements, such as
measuring path delays from source nodes to destination nodes
to indirectly infer the properties of the internal links. This falls
in the area of network tomography, which is important for
locating fault links or analyze performance whose application
areas range from internet to transportation networks. Because
each end-to-end external measurement may incur considerable
amount of costs, such as the measurement taken by probing
cars equipped with GPS in the transportation networks. How to
minimize the cost of external end-to-end measurements while
accurately recovering the properties of all the internal links has
not only theoretical significance but also application values.

A fact which softens the problem is that the link properties
in a large graph generally constitute a sparse vector, because
it is generally true that only a small portion of links incur
obvious delays or packet loss rates than others. This fact
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has inspired the application of compressive sensing (CS) to
recover the link property vector by limited amount of end
to-end measurements. Compressive sensing provides funda
mental theories and efficient recovery algorithms to perfectly
recover signals that are sparse in an transformed domain.
However, previous studies in [1-3] showed that the along
path measurements in graphs pose new path restrictions to
measurement matrix, which makes measurements no longer be
free at random. This constraint makes explicitly analysis to the
recovery performance difficult. Only in undirected graphs, [1
3] proved that O(kiog(n)) path measurements are sufficient
to identify k-sparse link vector and proposed i1 minimization
based recovery algorithms. [4].

The problem becomes more difficult when it comes to di
graphs, although digraphs are more pertinent models of many
kinds of network systems, such as transportation networks and
sensor networks. The reason is that the random walks (path
measurement) on directed graphs, when considered as Markov
chain, converge towards absorbing states (such as the nodes
with 0 out-degree). In other words, the flows in the networks
tends to be absorbed by several nodes. The stationary visiting
probabilities of transient nodes (edges) are zero, which set
obstacles for explicit analysis.

However, in this paper, we turn our attention to a special
kind of digraphs, i.e., strongly connected digraph, whose
stationary distributions do exist for all nodes (or edges)[5].
Although the stationary distribution cannot be formulated
explicitly as in the undirected graph[6], we propose bounds
for the stationary distribution and based on which we prove
that m == 0 (c4KT2 (n)log (i)) end-to-end measurements
are sufficient to recover k-sparse link vectors in strongly
connected digraphs, where c is a constant, n is the number
of the links and k::; K ~1; T(n) is the mixing time, which will
be introduced in Section III. The proof progress introduce an
assumption that the node/edge degree is 0(1), which means
degree is not large.

The strongly connected digraph with low degree is a perfect
model for the transportation networks, where a car at any road
can find a path to any other road, and the road crosses are
naturally in low-degree when the road network is modeled
by a graph. But the road delay vector is unfortunately not
sparse. To address this difficulty, we leverage the empirical
non-congest delays of the roads as a reference. It helps to
estimate the congestion factors of the roads, and based on
which, we develop algorithms to recover road delay vectors.
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where M is an m x n binary matrix, whose element M ij == 1
if the i th path routes through the jth edge and 0 otherwise.
Note that value of edge can also be instantiated to link loss
rate, and formula (1) can still be obtained easily via calculating
logarithms of link loss rates [7].

We consider measurements are taken by random walks on
the digraph. We define a edge transition probability matrix
P E == {Pij} , ei, ej E E where Pij == deg(led+ if e/s end
point equal to ej's start point, and 0 otherwise. The stationary
distribution, '7r, of random walks on G, is defined formally
as a distribution that is invariant to the transition probability,
which is 1r == 1rPE. Unlike the stationary distribution of
undirected graph, which is characterized in a closed form,
the stationary distribution in digraphs has no closed-form
expression[6]. Even so, we can give a bound for 1r under the
strongly connected digraph (details in Section III).

The question now is whether we can estimate the delay
vector x via as less the end-to-end measurements as pos
sible, i.e., m < n. However, difference from the traditional
CS, the measurement matrix M is constructed by the end
to-end, along-path measurement in digraph other than the
freely random sampling, which may contradicts the incoherent
requirement of CS's observation matrix. Another problem is x

It decomposes the road delay vector to a set of sparse vectors
and recovers them iteratively, which accomplish the task
of recovering the non-sparse delay vector. Efficiency of the
proposed algorithms is evaluated by intensive simulations.

The rest of the paper is organized as follows. Section II
introduces the problem model. Section III presents the com
pressive sensing methodology in strongly connected digraphs.
Section IV shows how traffic delay vector is recovered by
limited number of probing cars. Section V presents the sim
ulation results. Section VI reviews the related works. Section
VII concludes the paper with future works.

II. PROBLEM FORMULATION
Consider a directed graph G == (V, E), where V and E are

node and edge sets, and let IVI == N and lEI == n be the
numbers of nodes and edges respectively. Let deg(*)- and
deg(*)+ be functions to return the out-degree and in-degree
of *, where * can be an edge or a vertex. In this paper, we
use edge degrees by default unless node degrees are specified.
Consider an edge e, deg(e)- indicates the number of edges
who end at e's start point and deg(e)+ indicates the number
of edges who start from e's end point. We assume the digraph
is (D, c)-uniform digraph which satisfies D ::s; deg(e)-'+ ::s;
cD, where c is a constant. We also consider G is strongly
connected, i.e., there must be a path between any two vertexes.

Each edge e == (u, v) has a value X e which is the delay from
u to v in the network context. We denote x == [Xl,· .. ,Xn]T

as the delay vector. An end-to-end measurement along a path
measures the sum value of the edges that participate in the
path. Mathematically speaking, if m end-to-end measurements
are taken, the measurement vector y is a m x 1 vector, where:

y == Mx, (1)

may be not sparse. But at this stage, we assume we can find a
method which can convert x to be sparse. Therefore, in what
is following, we consider x is k-sparse, i.e., having at most
k non-zero values, and concentrate on whether OS can work,
and if yes, how many end-to-end measurements are sufficient
to recover x accurately.

III. How TO CONSTRUCT THE MEASUREMENT MATRIX

Some previous studies [1, 3] have proved that in undirected
graphs, O(k log(n)) path measurements are sufficient to recov
er k-sparse link vector. In this section, we will show whether
compressive sensing over strongly connected digraph can also
have theoretical performance guarantees. If it is possible, how
many end-to-end measurements will suffice to recover the
delay vector.

Before solving above two problems, we firstly introduce two
useful notations for concisely presenting following sections.

• The null space of matrix M :

N(M) == {z : Mz == O}.

• The mathematical form of k-sparse vector:

rk == {x : Ilxllo :::; k},

where Ilxllo indicates the lo norm of x.

A. Null Space Condition for Vector Recovery

In this sub-section, we will give a theorem (Theorem 1)
to characterize what kind condition the measurement matrix
should satisfy such that the k-sparse vector can be recovered
under the digraph constraints. Before introducing this theorem,
we give two definitions for easily presenting the theorem, and
a lemma which is used to prove it.

Definition 1 (K-disjunct matrix). An m x n binary matrix M
is called K-disjunct, if for any no more than K +1 columns
(indexed by setS ~ {I, 2, ... ,n}), we select these K+l columns
to construct a sub-matrix M§, there is at least one row of M§,
which has only a single "1" in that row.

We can understand this definition from the digraph perspec
tive, suppose the K -disjunct matrix is m x n, each column
represents a directed edge (ej, 1 :::; j :::; n) and each row in
dicates a path (Wi == {eo, el, ... , et}) on digraph G == (V, E),
then take m paths and denote them by A == {Wi, 1 :::; i :::; m},
forVE* CE, IE*I ==K+l, we say A can construct a K-disjunct
matrix if the following condition is satisfied

(2)

Definition 2 (Matrix Spark [8]). The spark of a given matrix
Mmxn (m:::;n) is the smallest number of columns of M that
are linearly dependent. If m == nand rank(M) == n, then
spark(M) ==n + 1.

Based on above definitions, we give a lemma depicting the
relationship between them, which will be used in the proof of
Theorem 1.
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Lemma 1. If the matrix M mxn (m ~ n) is K-disjunct, then
spark(M) > K + 1

Proof. spark(M) > K +1 means any K'(~K +1) columns of
M are linear independent, thus for prove this lemma, we only
need to prove that any vector of N(M) has at least (K + 2)
non-zeros elements.

We prove it by contradiction. Assume :3z E N(M), z i= 0
and liz 110 ~ K +1. Suppose its support set is § (indexes set of
non-zero elements). Select K + 1 columns from M following
§ and construct a new matrix Ms. Since there exists one row
in M§ with a single "1", thus M§z i= 0 must be satisfied,
which contradicts the assumption that z E N(M). SO each
vector zEN(M) has at least (K + 2) non-zeros elements.
So we can conclude that any K' columns of M are linear
independent, and which infers that spark(M) > K +1. D

Now we give the first important theorem in this paper:

Theorem 1. Let M mxn be a K-disjunct matrix, and

y == Mx.

Ifx is a k-sparse vector, where k~ Ki l, then x is the unique
k-sparsest vector satisfying y == Mx.

Proof. We prove this theorem via contradiction. Assume
MXl == MX2 == y, where Xl,X2 E fk and Xl i= X2. Denote
8 1 and 82 are the support sets of Xl and X2 respectively. Since
MXl == MX2, we can get that M(XI - X2) == o. According
to the assumption, Xl - X2 i= 0 and Ilxl - x2110 ~ 2k ~ K +1,
we can infer that there exists one non-zero vector X == Xl -x2
such that Mx == 0, where Ilxllo~K+ 1. However, we know
that there does not exist such a non-zero vector from Lemma
1, which contradicts the assumption. D

From Theorem 1, we know that if the measurement matrix is
K -disjunct, then we can recovery the k-sparse vector precisely
via compressive sensing. So in the next sub-section, we study
the problem that how many path measurements, i.e., random
walks on digraph, are needed to construct a K-disjunct matrix.

B. How Many Measurements are Needed?

In this paper, measurement matrix is generated by m
independent random walks over the digraph. Our goal is to
get the upper bound of the number of random walks, which
is suffice to construct the K -disjunct measurement matrix. In
other words we need a theoretical guarantee that how many
random walks are suffice to construct A which satisfies the
condition (2).

In [1, 3], a upper bound of the number of random walks over
the (D, c)-uniform undirected graph has been proved, where
D ~ Do, Do == O(c2 KT(n)). T(n) is the 8-mixing time of
a random walk which will be introduced soon. In this paper,
we extend the method of [3] to give an upper bound in the
(D, c)-uniform strongly connected digraphs, where D ~ L~ J.
For distinguish the edge e, we use e as the base of natural
logarithm.

Theorem 2. Suppose G is a (D, c)-uniform strongly connect
ed digraph with 8-mixing time T(n) (where 8 :== (1/2cn)2).
For D < ~, K = O(y'e;2+l) and t = O(n/(c3KT(n»)
(random walk length), the measurement matrix M is K
disjunct with probability 1-0(1) after m measurements, where

m= 0 (c4KT2 (n)log (;)) .

We can understand this theorem from the opposite aspect:
if the conditions in Theorem 2 are all satisfied, then after m
random walks on G, the probability that the measurement
matrix M is not K-disjunct matrix is 0(1). In other words,
to prove this theorem, we need to lower bound the probability
that after m measurements, no random walk satisfies condition
(2). So the critical step is determining the probability that
a random walk satisfies condition (2) (i.e., 7re,E', will be
introduced soon), and in the following part of this sub-section,
we will focus on this problem.

For statement convenience, we firstly introduce a concept of
8-mixing time of random walk and give two useful notations.
According to [9] we know that the random walk on a digraph
G has a unique stationary distribution if G is strongly con
nected and is not periodic, which is obviously in our context.
Based on this fact, we give the definition of 8-mixing time
under strongly connected digraph.

Definition 3 (8-mixing time[3]). Let G == (V, E) be a (D, c)
uniform strongly connected digraph and denote by 7f its
stationary distribution. For e E E and an integer T, denote
by 7f; the distribution that a random walk of length T starting
at e. Then the 8-mixing time ofG is the smallest integer t such
that 117r; -7r11 00 ~ 8, for \:IT ~ t and \:Ie E E. For concreteness,
we define the quantity T(n) as the 8-mixing time of G for
8 :== (1 /2cn)2.

Consider a random walk W :== (wo, WI, ... ,Wt) of length t
on a digraph G == (~E), where the random variables Wi E E
denote the edge visited by the walk. We give the following
quantities related to the walk W:

7fe The probability that W passes e E E
7fe,E' The probability that W passes e E (E\E') but none

of the edges in E', E' ~ E.
Lower bounding 7fe,E' is exactly the critical step in the proof
of Theorem 2. We give a lemma about the lower bound of
7re ,E':

Lemma 2. There are two scales K o := 0 (y'e;2+1) and

to := 0 (c3K~(n») such that whenever K < K o, by setting
the path length t :== to the following holds. let E' be a set of
at most K edges in the graph G, and let e t/:. E' , then

7re,E' = n (c4K~2(n») .

For proving Lemma 2, we introduce some basic propositions
that will be used in the proof. The first proposition gives a
bound of stationary distribution of strongly connected digraph.
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(3)

(4)

D

Now by taking t == O(n/c3 KT(n)), we know that

P [BI
_] 8KT(n) 2K(cO(n/c3KT(n)) + 1)

r Wi-e < +---------- n-K n

==0 (T(n)K) ,
n-K

and using Proposition 3 we can get the conclusion:

4 8KT(n) 2ctK
Pr[Blwi=e,wo=eo]:S'" Pj:S K +--.

~ n- n
j=l

3KT(n)
P1S .n-K

P2 + P4 ::; tK(cln + 8 + 8') ::; 2ctK/n.

Using a union bound on the number of steps, we conclude

Altogether, using a union bound and by combining (3) and
(4), we get that

4T(n)K KT( )8' 5KT(n)
P3S n _ K + n Sn-K.

Using the same reasoning, Pl can be bounded as

The next step is to relax the conditioning on the starting edge
of the walk. The probability that the initial edge is in E' is
at most ~, and by Proposition 2, conditioning on Wi changes
this probability by at most K 8' S ~. Now we write

Pr[Blwi =e] SPr[wo EE']+Pr[Blwi=e,wo t/:.E']

2K ~ 8KT(n) 2K(et + 1)
S --:;- +~ Pj S n - K + n .

j=l

most IE'I(e/n + 6) < 2eK/n. Similarly, each edge on W2
has an almost-stationary distribution without the conditioning
on Wi. However, by Proposition 2, the conditioning on Wi
changes this distribution by up to 6' :== 2/(3en) at each edge.
Altogether, for each j E {T(n) + 1, ... ,(3 -1}, we have

Pr[ej E E'lwi ==e, Wo ==eo] s IE'I(c/n+8+8') s 2cK/n.

For bounding P3, we need to divide W3 /Wi into two seg
ments and bound them respectively. The details are shown in
Section VIII-D, here we just list the results: for Vj ==i+1, ... ,1,

, 2K
Pr[wj E E IWi == e, Wo == eo] S -K.n-

for Vj == f3, ...,i-I,

'I 2K,Pr[WjEE wi=e,wo=eo]::;-K +K8.n-

Finally, we obtain

Proposition 3. For the probability that W passes e E E, i.e.,
7re , we have

Proposition 1. Let G == (V, E) be a (D, c)-uniform strongly
connected digraph, and denote by 7r the stationary distribution
ofG. Then for each e E E, l/en S 7r(e) S eln

The proof can be found in Section VIII-A. Actually, in [6],
the authors proposed an approximated method to measure the
stationary distribution under strongly connected digraph via
P E. But in our paper, we don't need to get the exact stationary
distribution, bounding it is enough.

Proposition 2. Suppose a random walk W :== (WO, Wl, ... , Wt)
on digraph G starting from an arbitrary edge and set j ~

i+T(n). Let c denote any event that only depends on theftrst
i edges visited by W. Then for every M, VEE,

2
IPr[wi == Mlwj == v, c] - Pr[wi == Mlc] Is-.3cn

The proof details of this proposition are in Section VIII-B.
The following proposition gives a bound of 7re , which is
proved in Section VIII-C.

where t is the walk length.

Now we begin to prove Lemma 2, which is the technical
core of this paper.

Proof of Lemma 2. Let B denote the event that W ==
{Wo, ... ,Wt} visits some edges in E' . Now

7re ,E' == Pr[--,B, e E W]
= Pr[e E W]Pr[--,Ble E W]
== 7re (1 - Pr[Ble E W]).

Next we need to upper bound Pr[Ble E W]. Firstly we fix
i> 2T(n), and assume that Wi == e. Then fix some edge eo t/:.
E' and assume that Wo == eo. Now we try to upper bound
Pr[Blwi ==e, Wo ==eo].

Let f3 :=i-T(n) and 1 :=i+T(n), and assume that T(n)+1 <
f3 < l' < t. Partition W into four segments [3]:

W 1 :== (wo, Wl, ... , WT(n)),

W 2 :== (WT(n)+l' WT(n)+2, ... , W(3-1),

W 3 :== (w(3, W,B+l, ... , w"Y),
W4 :== (W1'+1,W1'+2, ... ,Wt).

For j == 1, 2, 3, 4, define

Pj := Pr[Wj passes E'lwo = eO,Wi = e].

Now we upper bound each Pj. In some degenerate situation,
W j may be empty, thus the corresponding Pj will be O.

W2 and W4 are "oblivious" of the conditioning on Wi and
Wo since they are sufficiently far from both. In particular,
the distribution of each edge on W4 is point-wise close to
stationary distribution 7r. Therefore, under our conditioning
the probability that each such edge belongs to E' is at
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Fig. 1. Example of City Roads Networks

TABLE I
SUMMARY OF KEY NOTATIONS

any car can reach any position from any starting point on
the graph. The digraph model also has small node and edge
degree, because a cross is generally intersection of two or three
roads. So that in following part of this section, we study how
to recover the delays of all roads by m probing cars walking
randomly on the digraph to measure end-to-end path delays.

B. Problem formulation for transportation monitoring
For convenience, TABLE I lists some notations which will

be used in the following parts. The real-time road delay

Notation Meaning
x The real-time road delay vector,

Xi indicates the current delay (travel time) on road i
xnr The empirical, non-congested road delays vector
x The estimated (recovered) road delays vector
r The road congestion rank vector
al,a2 The factor of semi-congestion and congestion,

where O<al <a2 < 1
p,p The path and road congestion factor vectors
x The guessed approximate traffic condition vector,

where x=xnr +(p.xnr )

MD,Mb Two binary diagonal matrixes, the former controls which
roads will be recovered; the latter indicates which roads
determined the road congestion factor.

(5)y' ==y - Mxnr == Mx'.

vector is represented by x, whose element indicates the current
delay of each road. Vector x nr represents the empirical, non
congested road delays, whose elements represent the normal
travel time on the corresponding roads without presence of
congestion. Let vector y represent end-to-end delays measured
by m probing cars in the city, and M be an m x n binary
matrix, whose element Mi,j == 1 if the ith car passes through
the jth road and 0 otherwise.

Apparently, y == Mx provides a appropriate formulation
about the transportation monitoring. Unfortunately, x, i.e., the
road delay vector is not sparse. Nevertheless, with knowledge
of the empirical non-congestion delay x nr , the difference
vector x' == x - x nr can rule out some non-congested
roads because their differences from empirical non-congested
delays are almost zero. Therefore, we consider the transformed
problem as following:

Lemma 2 give a lower bound of 7re,E' which exactly satisfies
our requirement. Now we are ready to prove Theorem 2.

The Proof of Theorem 2. Without loss of generality, take an
arbitrary set of edges E* ~ E with cardinality IE* I == K +1.
Denote by 7rE* the probability that a random walk visits one
and only one element from E*. In fact,

1fE*=(K+1)1fe,E*/e=n C4:;~n))'
Denote by Pf the failure probability, namely that the

resulting matrix M is not K -disjunct. By a union bound we
get

Pf ~ ( n ) (1 - 7rE*)m
K+l

( )
K +1 ( (K + 1 )) m

:'S Ke: 1 1 - n c4 KT2(n)
:'S exp ((K +1) log (Ke

: 1)) (1 - n C4T;(n))) m .

If

((K +1) log (Ke: 1)) +mlog (1-n (c4T;(n))) <0.
Thus by choosing

m = 0 (c4KT2 (n)log (R))
we can ensure that Pf == 0(1), and hence, M is K-disjunct
with overwhelming probability. D

IV. COMPRESSIVE TRANSPORTATION STATE MONITORING

Compressive sensing over digraphs can benefit many appli
cations. As an instance studied in this paper, we show that the
abstract models of transportation networks are exactly strongly
connected digraphs with low node/edge degrees. Therefore
applying compressive sensing on transportation networks to
monitor road delays becomes promising, which reduce the cost
of taking measurements by probing cars. However the delays
on roads, i.e, the edge delay vector are no longer sparse. Even
though, in this section we present a new method to recover
the edge delay vector even it is not sparse. Particularly, we
utilize the empirical non-congested delays of roads to help
to estimate the congestion factors of edges and paths at first,
which ultimately leads to an efficient algorithm to recover the
edge delays. To avoid ambiguity, in this section "road" and
"edge" are both used to represent road segments and "path"
means the route traveled by cars.

A. City Road Network Model
Given a digraph G == (V, E), where IVI == N and lEI == n.

Each vertex v E V indicates a road crossing, and each directed
edge (u, v) E E represents a road from crossing u to v. Fig.l
shows an example, where Fig.l(a) is a portion of the city road
networks and Fig.l(b) is the corresponding digraph model. We
notice that there is one apparent and important fact that the
digraph model of road networks is strongly connected, because
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Since every time only k elements are recovered, thus the
recovery algorithm should be executed until x totally be
recovered.

Actually, y" can not be gotten since x is unknown which
means that M MDx can not be calculated.

Nevertheless, we can try to construct a vector X, a substitute
of x such that MMDx ~ MMDx. Assume x ::; 2xnr , we
need to find a factor vector 0 ::; p ::; 1, and based on this
factor vector, we can construct a vector x == x nr + (p . x nr ).
Algorithm 1 shows a heuristic iteration method to get p. The
fundamental idea is that firstly utilizing Mb we delete the
roads whose congestion state have been determined and minus
their contributions from y', then we consider the left roads
average the contribution to new y'. We will give priority to
the rows where only one or two roads are left when calculate
p. Then the final version of the measurement formula become
as the following:

C. The Recovery Algorithm

The algorithm can roughly divided into two steps:
step 1 Calculate road congestion factor vector.
step 2 Recover x by the descending order of the road

congestion factor until x totally be recovered.
For step 2, we can utilize some common CS recovery algo
rithm, for example, l1 -norm minimization. The critical step is
calculating the road congestion factor. So prior to introducing
the algorithm details, we will show how to estimate the
road congestion factor vector p. Specifically we need firstly
calculate the path congestion factor vector p, then based on
p, we can guess some road congestion factors, and these
estimated factors will in turn influence the path congestion
factors. This process will continue until all road congestion
factor are determined. Algorithm 1 shows the details about

We hope x' is sparse, but most times, it can not meet our
expectation. The reason is that the ranges of x nr are different,
which means that even some road with big normal delay is
unimpeded, the difference value may still be greater than some
congested road with small normal delay values.

Although we can not recover x' directly most times, we still
can infer some roads condition via Formula (5). For example,
if y' (i) == 0, then the real-time traffic condition of roads visited
by the ith measurement path are equal to the corresponding
elements values in x nr and we can make sure that these roads
are unimpeded. Further more, if we can infer which roads are
most possible congested, then we can recover these roads with
high priority. Suppose we select k most possible congested
roads by our speculation, and index them by the set S ==
{si,l ::; i::; k}. Given a binary diagonal matrix M D == {dij },
where dsjsj ==0, Sj E S or 1 otherwise. Then the vector x" ==
x - MDx must be k-sparse. The formulation becomes a new
form:

Algorithm 1 Calculate Path Congestion Factors
Input:

Measurement matrix M mxn == {mij}, x nr , y.
Output:

The estimated road congestion factors vector p.
1: Mb == Inxnil Inxn is the identity matrix.
2: Ii == 0, p == 0;
3: y' == y - MMbxnr;
4: Choose the edges where y'(i) == 0 and mij == 1. Index

them by S == {Si, 1 ::; i::; t} and set dSiSi == 0, 1 ::; i::; t;
· -. - y/(i) £ 11 1 . .5. P~ - ~n .. nrd .. ' or a ::; 'l ::; n,

'=1 m"'3 x , 33

6: while #3 of und~terminedroads > 0 do
7: M'==MMb;
8: [minV, minI] == min(M' (i· )) for all 1::; i ::; m;
9: Choose the edges where mminI,j == 1 and index them

by S == {Si, 1 ::; i::; t}, and set dSiSi == 0 for all 1::; i ::; t;
- - y'(minI) £ 111< ·<t·

10: PSi - MI(minI.)xnr , or a _ 'l_ ,

11: y'==y'-M((M'(i·)T.p).xnr ).
- - y'(minI) £ 11 1 . .12: Pi - ~n .. nr d .. , or a ::; 'l ::; m,

j=l mt3 x j JJ

13: end while

calculation of p and p. Note that M(i·) indicate the ith row
and M T represents the transform of M.

Algorithm 2 Traffic Condition Vector Recovery Algorithm
Input:

Measurement matrix Mmxn == {mij}, x nr , y.
Sparsity level k.

Output:
The estimated traffic condition vector x for x.

1: x== x nr , M D == Inxn ;
2: Calculate p via Algorithm 1;
3: y==y-MMDX==y-MMD(Xnr +(p. x nr ));
4: while # of unrecovered roads > 0 do
5: Select k roads following descending order of p's ele

ments, which are indexed by S == {Si, 1 ::; i :s; k};

The details of recovery algorithm is show in Algorithm 2.
There are two matters need attention:

• In line 7, l1_min(y, M) indicates the l1 norm min
imization function, which is a common algorithm in
compressive sensing, so we omit the details.

• At last iteration, the number of the roads waiting for

6: d~iSi == 0, for all 1 :s; i :s; k;
7: x == Mbx + (I - Mb) * l1_min(y, M);
8: Mb == I;
9: end while

Actually, there are still some roads can not be assigned
congestion factor since they are never be visited by any path.
In fact, we do not need to calculate these roads congestion
factors and just need estimate their road condition when we
finished the recovery algorithm. The details will be introduced
in the following part.

(7)

(6)

y==y-MMDX~Mx".

y" ==y-MMDx == Mx".
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recovery may be less than k. But for concise statement,
we assume the value of k can change at last iteration.

We have mentioned that there may be some roads never
be visited by any measurement path. So we need find a
method to estimate these roads traffic condition. we propose
a simple method based on the assumption: one road and
its neighbour roads has highly similar traffic condition. For
example road ei == (u, v) is never be visited in measurement
process, denote by E; == {ej == (u', u), u' E VIv} andE: == {ej == (v,v'),v' E Vlu} the backward and forward
neighbor roads set respectively, then the calculation formula
is like following:

(8)

Based on the recovered traffic condition vector X, we can
easily rank the roads congestion levels. As the widely used
"red", "yellow", "green" representation of road conditions, by
comparing the real-time road delay with the empirical non
congestion delay, we present Ti E r which can take only
three values to indicate the real-time road conditions. If the
current traffic condition vector is known, we can rank the road
condition like following:

if xir :::; Xi < (1 +al )xir II"green"
if (1 +al)xir :::; Xi < (1 +(2)xir II"yellow"
if (1 +(2)xir :::; Xi:::; 2xir II"red"

(9)

v. SIMULATION RESULTS

Simulations are carried out to evaluate the traffic delay
monitoring algorithms. We pay special attentions to the de
tection rate of congestion links and the tradeoffs between the
measurement cost and detection accuracy.

A. "Ground Truth" Data

For evaluating the performance of Algorithm 2, we need
to generate the "ground truth" data, i.e., simulate the traffic
condition of the city road networks and take measurements
on it. For this purpose, we built an abstracted but reasonable
traffic network model in Matlab to verify the conceptional
correctness of proposed algorithms. The model omits the
dynamic behaviors of cars and effects of traffic lights, but
grasps the essential spatial correlation of traffic delays in
connected and neighboring roads. The design methodology of
the model is that the congestion at road ei will propagate
slowly to its incoming links and its siblings. The releasing
from congestion of this road will also reduce the congestion
of incoming links and siblings. We have verified different
influencing coefficients to incoming links and siblings and
found that the proposed algorithm worked well in different
correlation scenarios.

B. Simulation Results
We evaluate the accuracy of recovered vector x via calcu

lating the SNR value between x and x following the formula

Ilxll§
SNRdB=lOloglO IIx - xll~

Fig.2 was drawn for measurement number and SNR values
among 9 different road numbers and 3 different congestion
ratios (~). We can find that as the road number and congestion
ratio increasing, the measurement number must increase to
keep the accuracy of x. Although the SNR values indicate
that the accuracy are not perfect, but almost all them are less
than 15dBm, which is also a acceptable results in compressive
sensing.

Fig. 2. Measurement Number and SNR between x and x
Based on the recovered vector x, we can further rank the

roads congestion levels following (9), because it generally true
that only the congestion levels are cared by users. TABLE II
shows an example when the road number n is fixed 1072. We
can find that for congested roads, not only the detection rate
( C 0"!1'"!,,on) but also the accuracy rate ( Common ) are greater

Or'lg'lnal Recovered
than 90%; for semi-congested roads, the detection rate is also
higher than 90%.

TABLE II
FIXED ROAD NUMBER

n = 1072,m = 731 Original Recovered Common
Green 989 990 985
Yellow 21 21 19
Red 62 61 59

Further more, we have also compared the detection and
accuracy rate regarding different road number and congestion
ratio. From Fig 3, we find that although the accuracy ofx is not
perfect, we still can detect the congested and semi-congested
roads with high probability. For example, the detection rate
for congested and semi-congested roads (Fig.3(a) and 3(c)),
we can easily find that almost all the red and yellow roads
be checked out and the lower congestion ratio the better
performance. Although the accuracy rate (Fig.3(b) and 3(d))
for congested and semi-congested roads are not very well, we
can consider these results as pessimistic estimation, in other
words, if some road is ranked as a green road based on our
recovery vector, then basically this road can be considered as
a unimpeded road.
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processing the traffic data statistically.
Different from these existing approaches, we at first investi

gate theoretically the application of CS on strongly connected
digraphs, which in the first time shows the effectiveness of
CS in digraphs to the best of our knowledge. We then present
efficient recovery algorithms in essential model of traffic
networks, which provides algorithms to recover road delays
which are even not sparse.

Fig. 3. Detection and Accuracy Rate

VI. RELATED WORK

We review related work in this section. Compressive sensing
is a new paradigm in signal processing area, which offers fun
damental theories and efficient recovery algorithm to recover
sparse signal from reduced dimension measurements[4, 8, 10].
A promising application area of compressive sensing is net
work tomography [11-13], which investigate the problem of
monitoring link properties by limited number of end-to-end
measurements.

Previous studies about this problem in [1-3] showed that
the end-to-end, along-path measurements in graphs introduced
new path restrictions to the measurement matrix, so that the
measurements could no longer be independent and freely
random. This in some extend may contradict the incoherent
requirement of observation matrix in CS. But by deliberate
proofs, [1-3] proved that, despite the path constraints, in
undirected graphs, O(klog(n)) path measurements are suf
ficient to identify k-sparse link vector and they proposed
11 minimization algorithm that has theoretical guarantee in
recovering the k-sparse link vector.

Some researchers have explored to apply the idea of com
pressive sensing onto transportation network monitoring[14,
15]. Other than the state of the art in estimating traffic utilizing
static sensors such as loop detectors or traffic cameras, some
recent studies have began to investigate the use of GPS
devices as dynamic traffic probes for inferring traffic volume
using existing mathematical models[16, 17], or they estimate
traffic speed from GPS[18, 19]. The utilization of dynamic
prob sensors provides a great support for the transportation
monitoring via compressive sensing. However, most of these
studies are based on a data mining type of approach. They
either converge the transportation flow matrix by singular
value decomposition or discovered the sparseness feature by

VII. CONCLUSION AND FUTURE WORKS

In this paper, for strongly connected digraphs with low node
(or edge) degrees, we prove that O(klog(n)) path measure
ments are sufficient to recover k-sparse edge vectors. It is de
rived by giving bounds to the stationary distribution of random
walk which is different from the analysis in undirected graphs.
Further more, because the urban road networks are exactly
strongly connected and with low node degrees, we designed
an efficient, iterative recovery algorithm, which recovers the
road delays and the congestion states of the traffic networks by
small number of probing cars. In future work we will study the
traffic delay recovery algorithm on the real data set. Secondly,
based on the current congestion state, predicting the future
change of the network also falls in our research interests.
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VIII. ApPENDIX

A. Proof of Proposition 1
In [5], there are two lemmas (Lemma 16 and 18) about the bound

of stationary distribution on digraph, which is

(1 - 0(1)) degie)- ::; IT(e) ::; (1 + 0(1)) degle)- ,
n n

where n is the edge number of a new digraph G' induced from G
whose edges become the vertexes of G'. Suppose two edges el =
(Ul, VI), e2 = (U2, V2) of G, if VI = U2, then there exists a directed
edge from el to e2 in G'. Since G is (D, c)-uniform digraph, which
means D ::; deg(e)- :::; cD and Dn ::; n ::; cDn, thus we conclude
that

1 D cD c
-=-<IT(e)<-=cn eDn - - Dn n

B. The Proof of Proposition 2
We know that

P [ _ 1.- ]_Pr[Wj=vIWi=J-L,c].Pr[wi=J-LIC]
rWi-J-lWJ-V,c - P [ I] .r Wj =V c

Now, according to the definition of 8-mixing time, we get that

IPr[Wj == VIWi == J-L, c] - Pr[wj == vic] I::; 28,

because regardless of the knowledge of Wi = J-l, the distribution of
Wj must be 8-close to the stationary distribution. Therefore,

IPr[Wi == J-Llwj == v,c] - Pr[wi == J-Llc] I :::; 26/Pr[wj == vic]
:::; 26/(I/cn - 6)
::; 86cN/3

c. The Proof of Proposition 3
Let t' :== Lt/T(n)J, for each i E {a, 1, ... , t'}, w~ :== WiT(n).

Denote by W' := {wb, ... , w~, } a subset of t'+1 edges visited by W.
Obviously, ITe is at least the probability that e E W' .

By the definition of 8-mixing time, regardless of the choice of
wb, the distribution of w~ is 8-close to the stationary distribution IT,
which assigns a probability between 1/en and c/n (by Proposition
1) to e. Therefore,

pr[w~=feIW~]::;I-I/cn+6::;1--21 .
cn

Similarly, Pr~~ =f elwb, w~] :::; 1-1/2en, and so on. Altogether, this
means that

(
1 ) t/T(n)

Pr[w~ =f e, w~ =f e, ... , W~I =f e]::; 1 - 2en

::; e( -t/2cnT(n»

::; 1 - f1(t/cnT(n)).

In the last equality we used the fact that e- x ::; l-x/2 for 0 ::; x ::; 1.
Thus the complement probability is lower bounded by f1(t/cnT(n)).

D. The upper bound of P3
Denote D' = cD, for bounding P3, we firstly calculate

Pr[wi+l E E'lwi == e, Wo == eo]

= ~~,(~') (~r (n ~K) D'-j

==~(n-K)D'D' j(~/) (~)j
D' n L J n-K

j=1

~(n~K)+~'(n~K)D'~j(~')(n~Kr

~(n~K)+~'(n~K)D'~j(~D'r(n~Kr

~(n~K)+~'(n~K)D'~(n~K)~n~K

where the second inequality is due to (~') ~ (~D') j for D' ~ e2 ,

(ve ,)j ( )j-1and the third inequality because of j ~D n~K < 1 for
K < Ko. Similarly,

, ] 2KPr[wi+2 E E IWi = e,wo = eO,wi+1 ::; -K'n-
regardless of Wi+1 which means

, ] 2KPr[wi+2 E E IWi = e,wo = eo :::; -K'n-
and in general, for Vj == i + 1, ... ,7,

, 'I ] 2KPr[wj E E IWi == e, Wo == eo] ==Pr[wj E E Wi == e ::; -K.n-
Similarly Vj = {3, ... ,i-I, we have

, ] 2KPr[wj E E IWi = e ::; -K'n-
and by Proposition 2, conditioning on Wo changes this probability by
at most K 8'. Therefore,

, ] 2K r'Pr[wj E E IWi == e,wo == eo :::; -K+Ku .n-
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