
ColSLAM: A Versatile Collaborative SLAM System for Mobile
Phones Using Point-Line Features and Map Caching
Wanting Li

School of Information, Renmin
University of China

Beijing, China
lindalee@ruc.edu.cn

Yongcai Wang∗
School of Information, Renmin

University of China
Beijing, China
ycw@ruc.edu.cn

Yongyu Guo
School of Information, Renmin

University of China
Beijing, China

yongyuguo@ruc.edu.cn

Shuo Wang
School of Information, Renmin

University of China
Beijing, China

shuowang18@ruc.edu.cn

Yu Shao
School of Information, Renmin

University of China
Beijing, China

1428040443@qq.com

Xuewei Bai
School of Information, Renmin

University of China
Beijing, China

bai_xuewei@ruc.edu.cn

Xudong Cai
School of Information, Renmin

University of China
Beijing, China

xudongcai@ruc.edu.cn

Qiang Ye
Faculty of Computer Science,

Dalhousie University
Halifax, Canada
qye@cs.dal.ca

Deying Li
School of Information, Renmin

University of China
Beijing, China

deyingli@ruc.edu.cn

ABSTRACT
Over the past years, augmented reality (AR) based onmobile phones
has gained great attention. When multiple phones are used in
AR applications, collaborative simultaneous localization and map-
ping (SLAM) is considered one of the enabling technologies, i.e.,
multiple mobile phones complete the localization and mapping
through collaboration. However, the state-of-the-art collaborative
SLAM systems not only suffer from the delays introduced by a
high-complexity graph optimization problem, but also may exhibit
varying levels of accuracy across dissimilar environments or differ-
ent types of mobile devices. In this paper, we propose a scalable and
robust collaborative SLAM system, point-line-based Collaborative
SLAM (ColSLAM). Technically, ColSLAM includes two innovative
features that help achieve satisfactory scalability and robustness.
First, a mapping cacher (MC) is designed for each agent on the
server, which uses global keyframes to detect loop closures, up-
dates the cached local map, and quickly responds to the agent’s
pose drifts. With MC, each agent’s local pose is corrected using
global knowledge in real-time. Secondly, to improve the robustness
performance, ColSLAM employs point-line-fusion-based Visual
Inertial Odometry (VIO), point-line-fusion-based NetVLAD loop
detection, and an enhanced geometric verification and relative pose
calculation method called PNPL. Empirical evaluations based on the
∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0108-5/23/10. . . $15.00
https://doi.org/10.1145/3581783.3611995

EuRoc dataset and real degenerate environments demonstrate that
ColSLAM outperforms the existing collaborative SLAM systems in
terms of accuracy, robustness, and scalability.

CCS CONCEPTS
•Human-centered computing→Mobile phones;Visual ana-
lytics; •Computingmethodologies→ Tracking;Reconstruc-
tion; Vision for robotics.

KEYWORDS
Augmented Reality, Mobile Phones, Multi-agent, Collaborative
SLAM, Map Caching, Point-line Features

ACM Reference Format:
Wanting Li, Yongcai Wang, Yongyu Guo, Shuo Wang, Yu Shao, Xuewei
Bai, Xudong Cai, Qiang Ye, and Deying Li. 2023. ColSLAM: A Versatile
Collaborative SLAM System for Mobile Phones Using Point-Line Features
and Map Caching. In Proceedings of the 31st ACM International Conference
on Multimedia (MM ’23), October 29–November 3, 2023, Ottawa, ON, Canada.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3581783.3611995

1 INTRODUCTION
Augmented reality (AR) based on mobile phones has gained great
attention for its potential application in smart navigation, intelli-
gent factories, and immersive games[1]. When multiple phones are
used in AR applications, collaborative simultaneous localization and
mapping (SLAM)[2] is considered one of the fundamental support-
ing techniques. Collaborative SLAM aims to locate mobile phones
accurately and in real-time, while constructing and maintaining
the point-cloud map of the environment by fusing the multi-view
image sequences collected by the phones. Technically, although
collaborative SLAM is highly promising, it still faces serious chal-
lenges.

9032

https://doi.org/10.1145/3581783.3611995
https://doi.org/10.1145/3581783.3611995
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581783.3611995&domain=pdf&date_stamp=2023-10-27

MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Wanting Li et al.

So far, there have been a number of successful attempts of build-
ing collaborative SLAM systems [3–5]. However, scalability and
robustness remain to be the key barriers. The reason is that the
computing devices involved in the systems have constrained com-
putation capability and local errors could be exaggerated in the
global optimization process. Note that existing collaborative SLAM
systems generally adopt an agent-server architecture, where mobile
phones work as agents. Each mobile phone carries out Visual Iner-
tial Odometry (VIO) [6–8], and reports local trajectories and key
frames to the server. The server conducts cross-device loop closure
detection [9, 10] and solves a large-scale global graph optimization
problem. It registers the local maps and sends the corrected poses
to the agents to adjust their local drifts. As time goes by, the scale of
the server’s optimization problem continuously increases, making
it more and more difficult for the server to correct the local drifts
of the agents in real-time, even if only several mobile phones are
involved. Meanwhile, in textureless environments, when an agent
provides a poor VIO result or when the server conducts noisy loop
closure detection, the accuracy of the collaborative SLAM system
will significantly deteriorate due to error propagation in the global
optimization process.

To address the scalability and robustness problem, we propose a
versatile collaborative SLAM system, point-line-based Collabora-
tive SLAM (ColSLAM). With ColSLAM, a map caching scheme is
used to decouple the cached sub-graph (CSG) optimization process
and the global map optimization process. In addition, a novel two-
stage asynchronous optimization method is employed to return
agent keyframe drifts in real-time, and send agent local map drift
once map fusion is completed. This approach enhances mapping
accuracy and reduces communication network bandwidth while
satisfying real-time requirement. To improve the robustness per-
formance, ColSLAM utilizes both point and line features extracted
from the collected images, which is completely different than the
original point-based SLAM framework. Line features are rich in
man-made environments, which are potential to mitigate pose drift-
ing when point features are insufficient. The main contributions of
this paper can be summarized as follows:

• Map caching: ColSLAM includes a two-stage asynchronous
optimization method for cached sub-graph (CSG) optimiza-
tion and global map optimization. This method ensures real-
time responses to agents while taking accuracy and commu-
nication efficiency into consideration, which significantly
improves the scalability of collaborative SLAM.

• Robust point-line features: ColSLAM redesigns thewhole
collaborative SLAM framework to utilize point-line features.
Technically, ColSLAM includes point-line-based VIO on the
agents and the point-line fusion-based NetVLAD method to
conduct loop detection on the server. Robust features are
indispensable for multi-agent collaboration.

• Collaborative loop detection: With ColSLAM, we use an
enhanced geometric verification and relative pose calculation
method, called PNPL, to further improve the robustness and
accuracy of the system.

The rest of the paper is organized as follows. We first discuss the
related work in Section 2. An overview of ColSLAM is provided
in Section 3. The details of the agent-side and server-side schemes

are presented in Sections 4 and 5, respectively. Our experimental
results are described in Section 6. Finally, Section 7 includes our
conclusions.

2 RELATEDWORK
Visual-Inertial SLAM (VI-SLAM) is a process that combines visual
and inertial measurements to simultaneously estimate themotion of
a camera and to create the map of the environment simultaneously.
In this section, we present the related work on single-agent visual-
inertial SLAM and multi-agent collaborative SLAM.

2.1 Single-agent Visual-Inertial SLAM
The mainstream methods for VI-SLAM generally conduct feature
point extraction and matching in the front-end for visual odometry,
and use EKF (Extended Kalman Filter) or graph optimization in
the back-end for loop detection, global correction, and mapping.
Representative works include MSEKF[12] and OpenVINS[13] us-
ing EKF backend, and VINS-Mono[6] and ORB-SLAM3[14] which
use graph optimization backend. Although the point-based feature
extraction and matching can generally provide accurate localiza-
tion in most scenarios, key remained challenges for VI-SLAM are
how to improve robustness in degeneracy environments with weak
textures. Researchers have explored the integration of point and
line features in VI-SLAM. Line features can provide more robust
estimates in weak texture environments and help to perform better
matching. Representative works include PL-VIO[15], PL-VINS[16]
and IDLL[17].

But single-agent SLAM still has limitations in terms of limited
perception range, mapping efficiency and accuracy. To overcome
the limitations of single-agent SLAM, researchers investigate multi-
agent collaborative SLAM, which utilize information exchange
and collaboration of multiple agents to improve the accuracy and
reliability of the SLAM system.

2.2 Multi-agent Collaborative SLAM
Collaborative SLAM can be further divided into centralized collab-
orative SLAM and distributed collaborative SLAM. In centralized
SLAM, the agents conduct low-cost and real-time local VIO, and
the computationally expensive tasks are typically executed on the
server.

Early works propose fundamental methods. PTAMM [18] al-
lows maps of many environments to be constructed in parallel and
loop closure can be conducted across maps. CoSLAM [19] intro-
duce inter-camera pose estimation and inter-camera mapping to
deal with dynamic objects in the localization and mapping process.
Multi-robot CoSLAM [20] proposes to track a mobile target via
multi-robot collaborative SLAM. C2TAM [21] proposes a cloud-
based framework for cooperative mapping and tracking. They also
investigate the accuracy and bandwidth balance.

Recent works refine the collaboration methods and improve the
system performances. CVI-SLAM [22] and CCM-SLAM [23] pro-
pose agent-server collaborative SLAM architecture. They compute
short-term visual odometry and local map on the robot. Then the
robot sends keyframes and map points to the server. The server
performs loop closure detection, map fusion, and global graph op-
timization. COVINS [24] uses VINS [6] framework on the agent

9033

ColSLAM MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

side and the server has the similar role. CORB2I-SLAM [25] en-
hances agent adaptivity by evaluating VO pose consistency. When
the robot’s local odometry tracking fails, the robot side can be
re-initialized using the sub-map sent by the server to improve relo-
cation ability.

For collaborative SLAM using mobile phones, Liu et al. propose
a SLAM system called RAMA-SLAM[26]. In this system, smart-
phones use visual and IMU data to run monocular visual inertial
odometry and transmit data wirelessly to a server. RAMA-SLAM is
considered the most balanced method in terms of communication
efficiency and accuracy. It chooses not to transmit the matching
points, performs local BA on the server side, and only transmits off-
sets to the agents. The system in [27] also allows the server to send
part of the server’s historical information to the mobile phone side
so that the phone can search for loop closures from historical in-
formation and use factor graph optimization to correct the current
odometry. SwarmMap[28] addresses scalability challenges caused
by data explosion with growing numbers of agents through edge
offloading. The priority task scheduler and change-based server-
agent synchronization mechanism in SwarmMap determine which
tasks are transmitted to the agent preferentially, and only update
tasks that have changed to reduce data transmission and processing
overhead.

On the other branch, distributed collaborative SLAM methods
execute the localization and mapping algorithm in a distributed
manner, without a centralized server, which are gaining increas-
ing attentions [29][30][31][32][33]. However, they require high
computing capabilities of the nodes, and the data synchronization
and fusion are more complex. More comparisons on distributed
collaborative SLAM methods can be referred to a recent survey
[34].

We focus on the agent-server based collaborative SLAM. The
problem of delay increasing with the size of global graph and the
unreliability problem in degeneracy environments are still key
challenges for centralized collaborative SLAM. To overcome these
challenges, this papers proposes a map caching scheme for the
server to quickly response to the agents by using a two-stage asyn-
chronous optimization method, which decouples the fast response
and the global optimization. We also exploit point-line fusion to
redesign collaborative SLAM in different aspects to improve the
robustness in degeneracy environments.

3 OVERVIEW OF COLSLAM
In this section, we present the system overview of ColSLAM. The
overall architecture of ColSLAM is shown in Fig. 1. It can be divided
into the agent and the server tasks. On the agent, each agent per-
forms short-term VIO; uploads local poses and point-line features
to the server; and accepts pose drifts from the server to correct
local poses. The server conducts computationally intensive tasks
such as multi-agent loop closure detection, map fusion, and drift
responding to the agents.

Agent task: The agent collects IMU and camera data from own
sensors and performs IMU pre-integration, point and line feature
extraction, and triangulation to estimate the feature depth (only
in initialization). After initialization, the agent poses and features

are optimized through bundle adjustment in a sliding window com-
posed of N keyframes. The pose of an agent calculated at the kth
keyframe is denoted by Xk = (pTk ,q

T
k ,v

T
k)

T ∈ R10, where pk ∈

R3,qk ∈ R4,vk ∈ R3 represent the position, rotation, and velocity
of the agent respectively. The i-th 3D point feature and the j-th 3D
line feature in the kth frame are denoted by Pki = (ui ,vi , λi)

T ∈ R3

and Lk
j = (usj ,vsj , λsj ,uej ,vej , λej)

T ∈ R6, where λi is the in-
verse depth of the ith point. sj and ej denote the two end points
characterizing a line segment.

Local BA is executed in a sliding window of N keyframes, which
ensures the computational efficiency on the mobile phone. Each
agent can also calculate poses and local map by itself in real-time,
even when it is not connected to the server. The agent keeps trans-
mitting the newest pose XN and the newest feature PN and LN

of the N -th keyframe in the sliding window to the server for multi-
agent global map fusion. Meanwhile, the agent also receives two
kinds of drift corrections from the server for local pose correc-
tion. (1) keyframe drift correction (Rkdiff ∈ R3×3, tkdiff ∈ R3, for k ∈

{1, · · · ,N }), which are the fast returned drifts of the N poses in
the sliding window, responded by the cached map thread of the
server. (2) local map drift correction (Rw ∈ R3×3, tw ∈ R3) which
are slowly responded from the global optimization thread of the
server. It transforms the whole local map. These responses correct
local drifts by collaborative information on the server.

Server task:On the server end, the server maintains a fixed size,
cached sub-graph (CSG) for each agent. The CSG includes the poses
X, point-and-line features P, L of a N -keyframe sliding window,
which are all received from the agent, and convert them to the global
map coordinate system πw by agent’s local map drift (Riw , tiw). The
difference from the agent is that the loop closure edges based on
cross-agent, point-line based loop closure detection are added into
the CSG, and the CSG is in global frame. BA on the CSG is calculated
in real-time when new key-frame arrives. Then the corrections, i.e.,
{(Rkdiff , t

k
diff),k ∈ 1, · · · ,N } are sent back to the agent in real-time

to correct the local drifts when new key-frame arrives. Meanwhile,
the server runs global map fusion in another thread to detect and
fuses the maps of multiple agents asynchronously. This enables the
server to generate a comprehensive map of the entire environment
and give back the i-th agent’s local map drift (Riw , tiw).

Note that more details about the agent-side process will be given
in Section 4. In addition, the specifics of the server-side modules
will be discussed in Section 5.

4 AGENT-SIDE MODULE OF COLSLAM
Each agent conducts local point-line based VIO in a sliding window
with a fixed number of N keyframes. It then packs the informa-
tion of the newest keyframe of the sliding window, including its
pose, around 200 point features, and 100 line features of the N -th
keyframe and transmits to the server by ROS bridge. Meanwhile the
agent accepts keyframe drift correction fast returned from the server
and receives local map drift correction asynchronously returned
from the server. By adjusting local poses and map using these cor-
rection information, each agent achieves accurate local trajectory
and corrected local mapping results using the server knowledge,
while using low communication costs.

9034

MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Wanting Li et al.

Communication

Map Cache1 BA sequence

Place
Recognition

Map fusion
and

optimization
Map Cache2 BA sequence

Points and lines VIO Communication

Agent

Server

Poses, Points and Lines
Camera extrinsic-only first time

Image

Relative Poses
Match Points and Lines

Pose Drifts

Trajectory loop closure drift(synchronous)
Global map optimization drift(asynchronous)

Relative Poses

Point and Line Place Recognition

Keyframe Information

IMU data

Sequence ID
points, lines

Figure 1: Overview of ColSLAM. Each agent uses its own sensor information to perform points and lines VIO and then trans-
mits the results to the server through a communication module. The server stores the information of the agent through map
caching. The server performs place recognition, map fusion, and optimization based on point and line features. Then, the pose
drifts are transmitted to the agents for correcting the agents’ local drifts.

4.1 Point-line based VIO and Local Mapping
Point-line based VIO is developed for the agent side, which con-
sists of two threads. The first thread extracts data from the camera
and IMU sensors, and employs Shi-Tomasi[35] and KLT[36] algo-
rithms to detect and track point features, as well as LSD detector[37]
and LBD descriptor[38] by KNN[39] to identify and track line fea-
tures. Inliers are found using RANSAC-based epipolar geometry
constraint[40]. The IMU information is pre-integrated to be aligned
with the visual information.

The second thread is the point-line based tightly-coupled VIO.
We use the VIOmodule of IDLL[17] in this thread. IDLL uses inverse
depths of the end points of a line segment to represent the line,
which reduces the line representation to two dimension of freedoms
for efficiency. IDLL also provides good accuracy and is compatible
with android, windows, and linux. By using IDLL, we run BA in a
fixed size sliding window to minimize the measurement residuals
to achieve accurate pose estimation and local mapping. Three tasks
are accomplished on the sliding window: (1) construction of the
sliding window; (2) initialization of features, and (3) optimization
calculation of the states {Xk ,k ∈ {1, · · · ,N }}. We also designed a
communication using ROSbridge to communicate with the server.
The newly calculated pose, point and line features of the latest
frame in the sliding window are transmitted to the server.

4.2 Pose Drift Correction
The agent receives two types of drift corrections from the server:
(1) keyframe drift correction and (2) local map drift correction. The

first type of drift correction is returned in real time from the map
caching thread on the server. It includes pose corrections to all the
N keyframes in local frame, which is denoted by: {(Rkdiff , t

k
diff),k ∈

1, · · · ,N }. After receiving this, the agent adjusts the pose of each
keyframe in its sliding window by:

Rq2r (q̂k) = Rkdif f Rq2r (q
k)

p̂k = Rkdif f p
k + tkdif f

(1)

where q̂k and p̂k are adjusted quaternion and position states of
the k-th frame in the sliding window with k ∈ 1, · · · ,N . Rq2r (q)
is a function that transforms a quaternion q to its rotation matrix.
Updating the poses in the sliding window will correspondingly
update the point and line feature states through the following BA
process in the sliding window. So the corrections to the features
are not transmitted for efficiency.

The second type of correction, local map drift correction, is a local-
to-global transformation drift returned from the server’s global
optimization thread that aligns the agent trajectory to the world
coordinate system. It is denoted by (Riw , tiw) and offsets the entire
local map of the ith agent.

Rq2r (q̂vio) = RiwRq2r (qvio)
p̂vio = Riwpvio + tiw

(2)

where (qvio, pvio) and (q̂vio, p̂vio) are uncorrected and corrected
pose trajectory of the agent respectively.

9035

ColSLAM MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

5 SERVER-SIDE COLLABORATIVE MAPPING
MODULE

The server creates a cached sub-graph (CSG) for each agent, which
is composed by the N nearest keyframes received from the agent.
The loop closure edges will be detected and will be added into CSG.
The server also conducts loop closure detection, global optimization
for map fusion, communication with agents and global keyframe
saving.

5.1 Agent map caching
On the server side we create an agent handler for each agent to
receive keyframe pose and point and line information from the
agent side, and create a thread to optimize the cached sub-graph
(CSG). Both CSG and agent-side local map use the IDLL framework
to optimize the keyframe states using N -keyframes sliding window.
The difference is shown in Fig. 2. We add loop closure edges into
the CSG. The loop closure edge is the visual reprojection error of
the matching points and lines between the loop keyframes of the
global map and the corresponding keyframes in the CSG. Because
the result of loop detection is with the keyframes of the global map,
we have to translate the keyframe poses, points and lines within the
CSG to the world coordinate system of the global map. Therefore,
the keyframes in CSG are in global coordinate system transformed
by {Riw , tiw } of each keyframe.

Inter map BA sequence

𝟎 𝟏 𝟐 𝟑

𝟒𝒗𝟎
𝒗𝟏 𝒗𝟐

𝒑𝟎 𝒑𝟏 𝒑𝟐 𝒑𝟑
𝒍𝟎 𝒍𝟏

IMU:

Camera:

States in the sliding window
States from loop closure

Point Features
Line Features

IMU measurements
Visual measurements

Figure 2: The complete state variables in slidingwindows for
agent map caching.

More specifically, CSG receives the keyframe poses, points and
lines in the agent’s local frame and transforms them to the world
coordinate system πw . Then loop detection to the global keyframes
stored in the server is conducted. The detected loop frames in the
server will be copied to the CSG. Then CSG is optimized with
these added loop closure edges and keyframes. The specific bundle
adjustment equation is in (3).

min
X

ρ(
rp − JpX

2∑
p) +

∑
i ∈B

ρ(
rb (zbibi+1 ,X)

2∑
bibi+1

)

+
∑

(i , j)∈F
ρ(
rf (zcifj ,X)

2∑ci
fj

) +
∑

(i , j)∈L
ρ(
rl (zcilj ,X)

2∑ci
lj

)

+
∑

(f ,v)∈Loop
ρ(
rL(ẑvf ,X, q̂wv , p̂wv)

2∑cv
f

)

+
∑

(l ,v)∈Loop
ρ(
rL(ẑvl ,X, q̂wv , p̂wv)

2∑cv
l

)

(3)

where rb (zbibi+1 ,X) is the pose measurement residual between
the keyframe body state xi and xi+1. B is the set of all pose mea-
surements within the sliding window. rf (z

ci
fj
,X) and rl (z

ci
lj
,X) are

the point feature re-projection residual and the line feature re-
projection residual, respectively. F and L are the sets of point fea-
tures and line features extracted from camera frames. rL(ẑvf ,X, q̂

w
v , p̂

w
v)

is loop point re-projection residual and rL(ẑ
v
l ,X, q̂

w
v , p̂

w
v) is loop

line re-projection residual, where Loop represents the set of loop
closure frames. (f ,v) represents the f-th matched feature point de-
tected by loop closure framev and (l,v) represents the l-th matched
feature line detected by loop closure frame v . After marginalizing
a frame from the sliding window, {rp , Jp } is prior information that
can be calculated [41], and the prior Jacobian matrix Jp is from
the Hessian matrix after the previous optimization. We can use ρ
(Cauchy robust function) to constraint outliers.

By above optimization, after detecting each loop closure frame
between a keyframe in the sliding window and a keyframe in the
server’s keyframe set, we copy the relative pose and matched point-
lines of the server’s keyframe into the sliding window optimization
and compute the new poses (p̂kw , q̂kw) ∈ πw for all keyframes in the
sliding window. Nonlinear optimization continues to run in CSG
until a new keyframe arrives. When a new keyframe arrives, the
(Rkdif f , t

k
dif f) update for all keyframes in the sliding window are

computed by Eq(4) and sent back to the agent.

Rkdif f = (Riw)T Rq2r (q̂kw)Rq2r (qki)
T

tkdif f = (Riw)T (p̂kw − tiw) − Rkdif f p
k
i

(4)

This approach ensures the accuracy of the short-term drift com-
putation for the agent’s local VIO, while avoiding the need for global
pose optimization to be computed at every incoming keyframe, thus
ensures the efficiency of the algorithm.

5.2 Loop detection & place recognition
We introduce the point-line based loop closure detection process
in this subsection. The existing loop closure detection framework
firstly searches for candidate frames that match the query frame
and saves the index of the most similar candidate frame. Then, it
performs outlier rejection and relative pose computation on the
matching points on the candidate frames, and finally adds the qual-
ified keyframes to the graph to add the loop closure residual edges.

We implement a more robust loop closure detection process by
fusing point and line features based on the existing framework.
Firstly, we propose a point-line fusion loop candidate selection
method based on NetVLAD[42]. Then, the RANSAC-PNPL method
is proposed to check whether the current frame and the highest-
scored candidate frame really form a loop. It removes outliers from
the matched points and lines of the current frame and the highest-
scored candidate frame and rejects the loop closure hypothesis if
too many outliers are detected.

Point and Line NetVLAD: NetVLAD is a method that com-
presses several local features into a specific-sized global feature.
By clustering using neural networks and training by supervised
data, we can group features belonging to the same object into one
cluster and assign features belong to different categories large inter-
disances. However, the existing NetVLAD methods directly extract
features by the neural networks for better embedding the entire
feature set. In ColSLAM, we exploit traditional handcrafted fea-
tures, including Fast+Brief for points and LSD+LBD for lines to
speed up the process. Therefore, we extract traditional features to
train the NetVLAD and the overview is shown in Fig. 3. In par-
ticular, we extract N traditional features and their corresponding
D-dimensional descriptors, and arrange the N × D descriptors into
a feature map based on their distance from the top-left corner of

9036

MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Wanting Li et al.

Images
Fast+Brief

LSD+LBD

Feature Extraction

Np*D Point Feature Map

NL*D Line Feature Map

NetVLAD
Layer

NetVLAD
Layer

Kp*D Point Feature Map

KL*D Line Feature Map

FC Layer

+

.

.

.

.

.

.

.

.

.
S

oftm
ax

PNPL

2D 3D

(Kp+KL)*D Global
Descriptor

Database

6 DOF Pose
Relative Location

Figure 3: Overview of the proposed PL-NetVLAD.

the image. This feature map is then input into the NetVLAD layer
for clustering and dimensionality reduction. In this way, we obtain
the K × D dimensional descriptors of the point and line features
after dimensionality reduction in the form of a feature map. Next,
we use deep learning feature fusion to connect the point and line
feature descriptors with a fully connected layer for fusion, resulting
in a feature map of the fused point-line features. Finally, we use a
triplet loss function (5) for weakly supervised training to obtain
the loop detection model.

L(xi , x
+
i , x

−
i) = max(0,m + d(xi , x+i) − d(xi , x

−
i)) (5)

where xi is the K × D feature vector, x+i and x−i represent the
feature vectors of the positive and negative samples that absolutely
match and absolutely do not match the image, respectively.m de-
notes the margin, and d(·, ·) represents the distance metric between
two feature vectors.

Perspective-N-Point andLine (PNPL)Method:The Perspective-
N-Point and Line (PNPL) method involves solving a system of equa-
tions to estimate the camera pose from a set of 3D points and their
corresponding 2D projections, as well as a set of 3D lines and their
corresponding 2D line segments in the image. Given n 3D-2D point
correspondences, the equations can be written as:

[ui ,vi , 1] = K[R |t][Xi ,Yi ,Zi , 1]T (6)

where (ui ,vi) are the coordinates of the ith point on the image,
(Xi ,Yi ,Zi) are the corresponding 3D point coordinates in the world
frame, and K is the camera intrinsic matrix. R and t represent the
rotation and translation of the camera’s relative pose.

The 3D-2D line correspondences’ equations are as:

Li =

[
R⊤ −R⊤[t]×
0 R⊤

] [
n
d

]
li = [l1, l2, l3]

⊤ = KLni
(7)

where KL =

fy 0 0
0 fx 0

−fycx −fxcy fx fy

 denotes the line pro-
jection matrix and L is the 3D line, li are the image coordinates of
the ith 2D line.

We aim to estimate R and t that minimize the error between the
observed 2D points, lines and the points, lines projected from 3D.
We use RANSAC method[43] to remove outliers. Then, we adopt
the least squares method[44] to minimize both reprojections of the
points and lines to estimate relative pose.

5.3 Cached map fusion and global pose
optimization

Using the CSG results of the agents, the keyframes are then added
to the global pose graph for map fusion. Each keyframe serves as a
vertex in the global pose graph, connected to other vertices through
two types of edges as shown in Fig. 4.

Map Fusion

Agent1 Keyframe pose
Agent2 Keyframe pose
Neighbor edge
Loop edge

Figure 4: Neighbor edges and loop edges of pose graph.

(1)Neighboring edges: One keyframe is connected to several
previous keyframes via neighboring edges. These neighboring
edges represent the relative transformation between two keyframes
and are directly obtained from the same agent’s CSG.

(2)Loop closure edges: When a keyframe is detected as a loop
closure frame, it is connected to some previous keyframes through
loop closure edges in the pose graph, indicating that there exists a
loop closure between these two keyframes. The value of the loop
closure edge is calculated by the loop detection algorithm.

The residual between the keyframe i and the keyframe j is then
defined as:

ri , j =

[
R−1i (pwj − pwi) − p̂ii j

qj ⊗ q−1i − q̂ii j

]
(8)

9037

ColSLAM MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

where the positions and orientations are available in CSG. The
optimization problem with the neighboring edges and the loop
closure edges can then be formulated as the following optimization
problem:

min
p,q

{
∑

(i , j)∈S

ri , j2 + ∑
(i , j)∈L

ri , j2} (9)

where S is the set of neighboring edges, and L is the set of loop
closure edges. We do not use any robust kernel function for the
consecutive edges, as these edges are extracted from CSG, which
already been processed by sufficient outlier rejection mechanism.

The local map drift refers to the drift in coordinates from the
CSG to the global map. It is detected by the offset in Eq(10) between
the earliest loop closure frame in CSG and the global map.

Rw = Rq2r (q̂f ir st)Rq2r (qf ir st)
T

tw = p̂f ir st − Rwpf ir st
(10)

where {qf ir st ,pf ir st } is the pose of the firstly detected keyframe
in CSG and {q̂f ir st , p̂f ir st } is the pose of the corresponding loop
closure keyframe in the global keyframe set.

6 EXPERIMENTAL RESULTS
In this section, we first describe the configuration of our experi-
ments in appendix A. Thereafter, we discuss the performance of
ColSLAM in terms of accuracy, robustnes, and scalability.

6.1 Accuracy
We firstly compare the accuracy performances. EuRoc dataset[11]
is used in the accuracy evaluation. We evaluate the root mean
squared error (RMSE) of the absolute trajectory error (ATE) among
VINS-MONO[6], IDLL[17], RAMA-SLAM[26], COVINS[23] and
ColSLAM. The results are shown in Table1. In each experiment,
two sequences, as shown in the first column in Table1, are used
to evaluate the SLAM system. In the single-agent architecture, the
agent runs on each sequence once. In the multi-agent collaborative
SLAM (COVINS, RAMA-SLAM and ours), two agents run on the
two sequences simultaneously. The average trajectory errors (ATEs)
obtained from the localization results of two sequences provide
a reliable measure of the accuracy. As shown in the Table1, we
firstly note that the single-agent results of ColSLAM outperform
the performances of IDLL. This shows the effectiveness of our
loop closure detection method and sliding window relocalization
method combining point and line features. We highlight the error
decreasing rate from IDLL to single-agent ColSLAM in the 9th
column.

Then we see the ATEs of multi-agent ColSLAM are significantly
lower than that of VINS-MONO, IDLL, COVINS, RAMA-SLAM, and
its single-agent version. This is because the single-agent SLAM can
only query historical keyframes to add loop closure constraints,
while multi-agent collaboration adds more loop closure edges as
the multiple agents open the maps and accumulate keyframes more
quickly. We highlight the error decreasing rate from single-agent
ColSLAM to multiple-agent SLAM in the last column. The average
error decreasing is around 20%. The multiple agent collaboration
can effectively reduce the ATEs. What’s more, COVINS and RAMA-
SLAM work pretty much the same, suggesting that it’s just that

RAMA-SLAM is designed to be more lightweight and suitable for
mobile phones. Only RAMA-SLAM and ColSLAM run on mobile
phones, and ColSLAM is the best of all collaborative SLAM systems.

6.2 Robustness
To evaluate the robustness performance, we have specifically con-
structed a dataset for assessing the collaborative mapping capabili-
ties of multiple mobile phones in a weak-textured laboratory envi-
ronment with long, straight corridors. A total of 12 trajectories have
been collected in https://ieee-dataport.org/documents/idls-inlab.

We evaluate the performances of different algorithms on these
set of challenging trajectories. The ATEs of different algorithms
on different sequences are evaluated and are shown in Table2. Col-
SLAM provides much better performances than that of point-based
methods (VINS-Mobile, RAMA-SLAM) on pantry trajectory with
dim light and the corridor trajectory, indicating that our method
is much more robust by using the line features. VINS-Mobile and
RAMA-SLAM fail to generate maps in these trajectories. A visual-
ization example of the sequence No. 06 is shown in Fig. 5.

Figure 5: Visualization result of sequence-06. It can be seen
that the VIO results diverse in RAMA-SLAM, while Col-
SLAM provides a reliable localization result.

6.3 Scalability
Next, we evaluate scalability performances. We excluded trajec-
tories that RAMA-SLAM could not handle, so that 10 sequences
are used. We compare the memory usage when there are 2, 5, and
10 agents are running RAMA-SLAM and ColSLAM respectively.
The memory usage of the server is shown in Fig. 6. It can be seen
that ColSLAM method has obviously lower memory usage. The
memory usages of RAMA-SLAM and ColSLAM both increase with
the number of agents, but the memery usage of ColSLAM increases
much slowly than that of RAMA-SLAM. We also compare the map-
ping accuracy for different numbers of agents. ColSLAM provides
much better mapping accuracy using the same number of agents.
We also find that in the testing environment, five agents running
ColSLAM are sufficient to achieve good map accuracy. The results
of five agent collaboration are shown in Fig. 8.

9038

https://ieee-dataport.org/documents/idls-inlab

MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Wanting Li et al.

Table 1: Accuracy performance of ColSLAM

Sequence VINS-MONO IDLL COVINS RAMA-SLAM ColSLAM
single-agent multi-agent single-agent multi-agent single-agent multi-agent

MH_01&MH_02 0.059 0.058 0.061 0.089 0.060 0.058 0.051 ↓13.73% 0.041 ↓24.39%
MH_01&MH_03 0.069 0.055 0.061 0.055 0.061 0.065 0.052 ↓5.77% 0.042 ↓23.81%
MH_01&MH_05 0.139 0.137 0.186 0.174 0.168 0.167 0.136 ↓0.74% 0.123 ↓10.57%
MH_02&MH_03 0.077 0.071 0.071 0.061 0.066 0.069 0.065 ↓9.23% 0.044 ↓47.73%
MH_03&MH_05 0.171 0.152 0.181 0.162 0.194 0.200 0.148 ↓2.70% 0.131 ↓12.98%
MH_04&MH_05 0.111 0.093 0.106 0.101 0.110 0.099 0.090 ↓3.33% 0.081 ↓11.11%
V1_01&V1_02 0.051 0.046 0.048 0.046 0.040 0.051 0.046 0 0.034 ↓35.29%
V1_01&V1_03 0.125 0.112 0.071 0.044 0.083 0.092 0.073 ↓53.42% 0.022 ↓231.82%
V2_01&V2_02 0.087 0.074 0.082 0.071 0.074 0.079 0.069 ↓7.25% 0.049 ↓40.82%
V2_01&V2_03 0.321 0.143 0.144 0.121 0.221 0.215 0.122 ↓17.21% 0.113 ↓7.96%

Table 2: Robust performance of ColSLAM

Seq No. Environment VINS
Mobile

RAMA
SLAM ColSLAM

01
Lab

0.060 0.040 0.039
02 0.073 0.041 0.038
03 0.046 0.023 0.022
04 Pantry(dim light) failed failed 0.167
05 Corridor

(blank/glass wall)
failed failed 0.254

06 10.6 10.6 0.135
07 Lab+Corridor

(blank/glass wall)
9.62 1.24 0.156

08 9.18 1.74 0.231
09 Mail room(similar feature) 3.52 0.130 0.111
10 Mail room+Hall 0.440 0.220 0.130
11 0.317 0.240 0.123
12 Corridor(doors)+Hall 0.287 0.215 0.113

Figure 6: (a) Memory usage of RAMA-SLAM and ColSLAM.
(b) ATE distribution of RAMA-SLAM and ColSLAM.

We also test the agent location updating latency when there
are 5 agents. For ColSLAM, we measure each agent’s ColSLAM-
pose correction latency, i.e. the delay of the corrections returned
by the cached map updating, ColSLAM-map correction latency, i.e.,
the delay of the corrections returned by the global mapping, and
we compare them with RAMA-SLAM pose correction latency. The
results are depicted in Fig. 7. We observe ColSLAM-pose correction
latency is within 30ms, which is similar to the camera’s inter-frame
interval, which is nearly real-time. Although the ColSLAM-map
correction latency is larger, it does not need to be responded in
real-time.

Figure 7: Latency of ColSLAM

7 CONCLUSIONS
In this paper, we propose an innovative collaborative SLAM system,
ColSLAM, which can be used to map large-scale indoor environ-
ments in real-time. Themap caching scheme, one of the key features
of ColSLAM, allows for the utilization of measurement informa-
tion shared by multiple agents, resulting in a more comprehensive
and accurate global map. The joint optimization method for point
and line features in VIO improves the robustness of ColSLAM in
weak-texture environments, while the collaborative loop detec-
tion mechanism enhances the accuracy of of ColSLAM through
NetVLAD loop detection and PNPL relative pose calculation. Em-
pirical evaluations based on the EuRoc dataset and our own dataset
confirm the effectiveness of the proposed system, with significant
improvements in accuracy, robustness, and scalability. We believe
that the proposed system has the potential to thoroughly advance
the fields of robotics, autonomous systems, and augmented reality.
In the future, we plan to integrate more mobile phone sensors (e.g.,
GPS and barometer) to extend the system for large-scale collabora-
tive map building in joint indoor and outdoor environments.

ACKNOWLEDGMENTS
This work was supported in part by the National Natural Science
Foundation of China Grant No. 61972404, 12071478; Public Com-
puting Cloud, Renmin University of China; Blockchain Laboratory,
Metaverse Research Center, Renmin University of China.

9039

ColSLAM MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

REFERENCES
[1] Xiuquan Qiao, Pei Ren, Schahram Dustdar, Ling Liu, Huadong Ma, and Junliang

Chen. Web ar: A promising future for mobile augmented reality—state of the art,
challenges, and insights. Proceedings of the IEEE, 107(4):651–666, 2019.

[2] Danping Zou, Ping Tan, and Wenxian Yu. Collaborative visual slam for multiple
agents: A brief survey. Virtual Reality & Intelligent Hardware, 1(5):461–482, 2019.

[3] Ming Ouyang, Xuesong Shi, Yujie Wang, Yuxin Tian, Yingzhe Shen, Dawei Wang,
PengWang, and Zhiqiang Cao. A collaborative visual slam framework for service
robots. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 8679–8685. IEEE, 2021.

[4] Pierre-Yves Lajoie, Benjamin Ramtoula, Fang Wu, and Giovanni Beltrame. To-
wards collaborative simultaneous localization and mapping: a survey of the
current research landscape. arXiv preprint arXiv:2108.08325, 2021.

[5] Abhishek Gupta and Xavier Fernando. Simultaneous localization and mapping
(slam) and data fusion in unmanned aerial vehicles: Recent advances and chal-
lenges. Drones, 6(4):85, 2022.

[6] TongQin, Peiliang Li, and Shaojie Shen. Vins-mono: A robust and versatilemonoc-
ular visual-inertial state estimator. IEEE Transactions on Robotics, 34(4):1004–1020,
2018.

[7] Lingqiu Jin, He Zhang, and Cang Ye. Camera intrinsic parameters estimation
by visual–inertial odometry for a mobile phone with application to assisted
navigation. IEEE/ASME Transactions on Mechatronics, 25(4):1803–1811, 2020.

[8] Jannis Möller, Benjamin Meyer, and Martin Eisemann. Porting a visual inertial
slam algorithm to android devices. 2019.

[9] Zhongli Wang, Yan Shen, Baigen Cai, and Muhammad Tariq Saleem. A brief
review on loop closure detection with 3d point cloud. In 2019 IEEE International
Conference on Real-time Computing and Robotics (RCAR), pages 929–934. IEEE,
2019.

[10] Saba Arshad and Gon-Woo Kim. Role of deep learning in loop closure detection
for visual and lidar slam: A survey. Sensors, 21(4):1243, 2021.

[11] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Rehder,
Sammy Omari, Markus W Achtelik, and Roland Siegwart. The euroc micro aerial
vehicle datasets. The International Journal of Robotics Research, 35(10):1157–1163,
2016.

[12] Anastasios I Mourikis and Stergios I Roumeliotis. A multi-state constraint kalman
filter for vision-aided inertial navigation. In Proceedings 2007 IEEE international
conference on robotics and automation, pages 3565–3572. IEEE, 2007.

[13] Patrick Geneva, Kevin Eckenhoff, Woosik Lee, Yulin Yang, and Guoquan Huang.
Openvins: A research platform for visual-inertial estimation. In 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 4666–4672. IEEE,
2020.

[14] Carlos Campos, Richard Elvira, Juan J Gómez Rodríguez, José MM Montiel, and
Juan D Tardós. Orb-slam3: An accurate open-source library for visual, visual–
inertial, and multimap slam. IEEE Transactions on Robotics, 37(6):1874–1890,
2021.

[15] Yijia He, Ji Zhao, Yue Guo, Wenhao He, and Kui Yuan. Pl-vio: Tightly-coupled
monocular visual–inertial odometry using point and line features. Sensors,
18(4):1159, 2018.

[16] Qiang Fu, Jialong Wang, Hongshan Yu, Islam Ali, Feng Guo, Yijia He, and Hong
Zhang. Pl-vins: Real-time monocular visual-inertial slam with point and line
features. arXiv preprint arXiv:2009.07462, 2020.

[17] Yongcai Wang Shuo Wang Xuewei Bai Deying Li Wanting Li, Yu Shao. IDLL:
Inverse Depth Line based Visual Localization in Challenging Environments. arXiv
e-prints.

[18] Robert Castle, Georg Klein, and David W Murray. Video-rate localization in
multiple maps for wearable augmented reality. In 2008 12th IEEE International
Symposium on Wearable Computers, pages 15–22. IEEE, 2008.

[19] Danping Zou and Ping Tan. Coslam: Collaborative visual slam in dynamic
environments. IEEE transactions on pattern analysis and machine intelligence,
35(2):354–366, 2012.

[20] Jacob M Perron, Rui Huang, Jack Thomas, Lingkang Zhang, Ping Tan, and
Richard T Vaughan. Orbiting a moving target with multi-robot collaborative
visual slam. In Proceedings of the Workshop on Multi-View Geometry in Robotics
(MVIGRO), Rome, Italy, pages 1339–1344, 2015.

[21] Luis Riazuelo, Javier Civera, and JM Martınez Montiel. C2tam: A cloud frame-
work for cooperative tracking and mapping. Robotics and Autonomous Systems,
62(4):401–413, 2014.

[22] Marco Karrer, Patrik Schmuck, and Margarita Chli. Cvi-slam—collaborative
visual-inertial slam. IEEE Robotics and Automation Letters, 3(4):2762–2769, 2018.

[23] Patrik Schmuck and Margarita Chli. Ccm-slam: Robust and efficient centralized
collaborativemonocular simultaneous localization andmapping for robotic teams.

Journal of Field Robotics, 36(4):763–781, 2019.
[24] Patrik Schmuck, Thomas Ziegler, Marco Karrer, Jonathan Perraudin, and Mar-

garita Chli. Covins: Visual-inertial slam for centralized collaboration. In 2021
IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-
Adjunct), pages 171–176, 2021.

[25] Arindam Saha, Bibhas Chandra Dhara, Saiyed Umer, Ahmad Ali AlZubi,
Jazem Mutared Alanazi, and Kulakov Yurii. Corb2i-slam: An adaptive collabora-
tive visual-inertial slam for multiple robots. Electronics, 11(18):2814, 2022.

[26] Jialing Liu, Kaiqi Chen, Ruyu Liu, Yanhong Yang, Zhenhua Wang, and Jianhua
Zhang. Robust and accurate multi-agent slam with efficient communication
for smart mobiles. In 2022 International Conference on Robotics and Automation
(ICRA), pages 2782–2788. IEEE, 2022.

[27] Jialing Liu, Ruyu Liu, Kaiqi Chen, Jianhua Zhang, and Dongyan Guo. Collabo-
rative visual inertial slam for multiple smart phones. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 11553–11559. IEEE, 2021.

[28] Jingao Xu, Hao Cao, Zheng Yang, Longfei Shangguan, Jialin Zhang, Xiaowu
He, and Yunhao Liu. {SwarmMap}: Scaling up real-time collaborative visual
{SLAM} at the edge. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 977–993, 2022.

[29] Titus Cieslewski, Siddharth Choudhary, and Davide Scaramuzza. Data-efficient
decentralized visual slam. In 2018 IEEE international conference on robotics and
automation (ICRA), pages 2466–2473. IEEE, 2018.

[30] Pierre-Yves Lajoie, Benjamin Ramtoula, Yun Chang, Luca Carlone, and Giovanni
Beltrame. Door-slam: Distributed, online, and outlier resilient slam for robotic
teams. IEEE Robotics and Automation Letters, 5(2):1656–1663, 2020.

[31] Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Henrik I Chris-
tensen, and Frank Dellaert. Distributed trajectory estimation with privacy and
communication constraints: a two-stage distributed gauss-seidel approach. In
2016 IEEE International Conference on Robotics and Automation (ICRA), pages
5261–5268. IEEE, 2016.

[32] Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Henrik I Chris-
tensen, and FrankDellaert. Distributedmappingwith privacy and communication
constraints: Lightweight algorithms and object-based models. The International
Journal of Robotics Research, 36(12):1286–1311, 2017.

[33] Yun Chang, Yulun Tian, Jonathan P How, and Luca Carlone. Kimera-multi: a
system for distributed multi-robot metric-semantic simultaneous localization
and mapping. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 11210–11218. IEEE, 2021.

[34] Shuo Wang, Yongcai Wang, Deying Li, and Qianchuan Zhao. Distributed relative
localization algorithms for multi-robot networks: A survey. Sensors, 23(5), 2023.

[35] Jianbo Shi et al. Good features to track. In 1994 Proceedings of IEEE conference on
computer vision and pattern recognition, pages 593–600. IEEE, 1994.

[36] Simon Baker and Iain Matthews. Lucas-kanade 20 years on: A unifying frame-
work. International journal of computer vision, 56(3):221–255, 2004.

[37] Rafael Grompone Von Gioi, Jeremie Jakubowicz, Jean-Michel Morel, and Gregory
Randall. Lsd: A fast line segment detector with a false detection control. IEEE
transactions on pattern analysis and machine intelligence, 32(4):722–732, 2008.

[38] Lilian Zhang and Reinhard Koch. An efficient and robust line segment matching
approach based on lbd descriptor and pairwise geometric consistency. Journal of
Visual Communication and Image Representation, 24(7):794–805, 2013.

[39] Adrian Kaehler and Gary Bradski. Learning OpenCV 3: computer vision in C++
with the OpenCV library. " O’Reilly Media, Inc.", 2016.

[40] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer
vision. Cambridge university press, 2003.

[41] Shaojie Shen, Nathan Michael, and Vijay Kumar. Tightly-coupled monocular
visual-inertial fusion for autonomous flight of rotorcraft mavs. In 2015 IEEE
International Conference on Robotics and Automation (ICRA), pages 5303–5310.
IEEE, 2015.

[42] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic.
Netvlad: Cnn architecture for weakly supervised place recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 5297–5307,
2016.

[43] Konstantinos G Derpanis. Overview of the ransac algorithm. Image Rochester
NY, 4(1):2–3, 2010.

[44] Kenneth Levenberg. A method for the solution of certain non-linear problems in
least squares. Quarterly of applied mathematics, 2(2):164–168, 1944.

[45] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Crim-
inisi, and Andrew Fitzgibbon. Scene coordinate regression forests for camera
relocalization in rgb-d images. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2930–2937, 2013.

9040

MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Wanting Li et al.

Figure 8: The visualization of the collaborate SLAM results
on the server.

Figure 9: The top figure is the feature map, and the bottom
figure is the ground truth of the scene.

A EXPERIMENT CONFIGURATION
Compared methods: CoLSLAM is compared with VINS-Mono[6],
IDLL[17], COVINS and RAMA-SLAM[26]. The former two are sin-
gle agent SLAMmethods run on a PC, COVINS[23] is a collaborative

SLAM system where the agents run on PCs, and RAMA-SLAM is
the state-of-the-art collaborative SLAM system where the agents
run on mobile phones and the server runs on a Server. Meanwhile
VINS-Mono has a version that supports running on mobile phones,
VINS-Mobile.

Device and network settings: The device settings of the PC,
the phones, and the Server are compared in Table3. In ColSLAM
and RAMA-SLAM, agents communicate with the server through
wireless network. The network bandwidth is measured to be around
95Mbps, which can well support 200 point features and 100 line
features to be communicated with low latency.

Table 3: Hardware Configuration of Devices

Type Platform Configuration
Server Ubuntu 18.04 i7-11700, 2.50GHz CPU, 64GB RAM
Phones Android 10 Tianji 700, 2.20GHz CPU, 6GB RAM
PC Ubuntu 18.04 i7-11700, 2.50GHz CPU, 12GB RAM

Datasets for NetVLAD training: Two datasets are used to
train the NetVLAD based loop detection model, i.e., Pittsburgh
250k[42] and 7Scenes[45]. The number of point features extracted
on each image is 200, and the number of line features is 100. For the
outdoor Pittsburgh 250k dataset, positive loops are images within
10m from the query image, and negative samples are images farther
than 25m from the query image. For the indoor 7Scenes dataset,
positive loops are the images within 0.1m from the query image
and negative samples are the images more than 0.25m from the
query image. The margin of training is set to 0.1m.

B VISUALIZATION RESULT OF COLSLAM
Server-side display of trajectory results and screenshots of the
mobile phone run as shown in Fig.8. The feature map created on
the server side is shown in Fig.9.

C CONTRIBUTIONS OF PL-NETVLAD
The ability to accurately detect loop closures and relocalize the
map is crucial for successful collaborative SLAM and map fusion.
We evaluate the contributions of PL-NetVLAD, by comparing the
results with that using only DBoW2 and point-based VLAD. The
results are presented in Table 4.

Table 4: Loop detection

Method Tokyo 24/7 EuRoc
Recall@1 Recall@5 Recall@10 Recall<0.1m

DBOW2 44.7 58.3 69.1 46.0
NetVLAD 64.4 78.4 81.6 65.7
PL-NetVLAD 80.2 83.5 90.5 88.2

We use the Tokyo 24/7 and EuRoc datasets to evaluate the per-
formances of PL-NetVLAD. We focus on the recall of loop detection
within 0.1m in the EuRoc dataset. Our proposed method improves
over other mainstream methods by nearly 10 percentage points.
Furthermore, we conducted experiments on the outdoor Tokyo 24/7
dataset. PL-NetVLAD improves over other loop closure detection
methods by more than 20 percentage points.

9041

	Abstract
	1 Introduction
	2 Related Work
	2.1 Single-agent Visual-Inertial SLAM
	2.2 Multi-agent Collaborative SLAM

	3 Overview of ColSLAM
	4 Agent-side Module of ColSLAM
	4.1 Point-line based VIO and Local Mapping
	4.2 Pose Drift Correction

	5 Server-side Collaborative Mapping Module
	5.1 Agent map caching
	5.2 Loop detection & place recognition
	5.3 Cached map fusion and global pose optimization

	6 Experimental Results
	6.1 Accuracy
	6.2 Robustness
	6.3 Scalability

	7 Conclusions
	Acknowledgments
	References
	A Experiment Configuration
	B Visualization Result of ColSLAM
	C Contributions of PL-NetVLAD

