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Abstract— Distributed estimation of 6-DOF relative states,
including three-dimensional relative poses and three-dimensional
relative positions, is a key problem in UAV (Unmanned Aerial
Vehicle) networks, which generally requires vision-involved iter-
ative state estimation. How to achieve communication efficiency
is a crucial challenge considering the large volume of vision
data. This paper jointly considers the communication efficiency,
latency, and accuracy for distributed relative state estimation
involving vision data in UAV networks. The key is to solve
a distributed graph optimization problem, which includes two
key steps: (1) local graph construction and node state ini-
tialization in an initialization phase, and (2) iterative state
update and communication with neighbors until convergence in
online iteration phase. A communication efficient, Locating Then
Informing (LTI) initialization scheme is proposed, which is run
only once by each node to initialize each node’s local graph
and initial states. For online iteration, a RIPPLE-like distributed
state iteration scheme is proposed. It inherits the advantages
of traditional sequential and parallel methods while avoiding
their drawbacks. It enables nodes’ states to converge quickly
using fewer rounds of communications. The communication costs
for the initialization and online iteration processes are analyzed
theoretically. Extensive evaluations use synthetic data generated
by AirSim (a widely used UAV network simulation platform) and
real-world data are presented. The results show that the proposed
method provides accuracy comparable to the centralized graph
optimization method and significantly outperforms the other
distributed methods in terms of accuracy, communication cost,
and latency.

Index Terms— Communication efficiency, distributed graph
optimization, relative state estimation, UAV networks.

I. INTRODUCTION

THE network of Unmanned Aerial Vehicles(UAVs) has
attracted great attention, because of its potential in many

applications such as search, rescue, transport, disaster detec-
tion, and military. Although the global navigation satellite
system (GNSS) is most widely used for UAV localization
[1], [2], the GNSS signal is unavailable in indoor or under-
ground environments. Relative state estimation is an alternative
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method which locates relative locations and poses among
UAVs through relative measurements between them without
external location signals. Since vision data contains impor-
tant clues of pose and location, vision-based localization is
generally required to calculate the relative poses of UAVs
by common view geometry [3], [4] and graph optimization
[5], [6]. Relative distances among UAVs can be measured
by ranging techniques such as UWB (Ultra Wide Band)
[7]. Therefore, estimating 6-DOF relative states among UAVs
through onboard vision and distance measurements is an
important basis for a variety of applications [8], [9], [10].

The delay and communication cost for transmitting vision
data to a backend server is generally unaffordable, therefore,
distributed state estimation [11], [12] in which each UAV
processes data locally and updates states by distributed cal-
culation is highly required, which is robust against link or
node failures. Because each UAV has limited sensing range
and cannot obtain faraway information, so distributed iterative
optimization methods are widely adopted [13], [14], [15], [16],
[17] for information and state propagation in the network.
In the iteration process, each UAV uses its local measurements
and neighbors’ initial states to estimate its own state in a
local graph and then sends its updated states to its neighbors.
The neighbors repeat this state updating and propagation
process until the states of all the UAVs reach convergence.
In existing distributed approaches, one category uses only
the distances measured by the UWB among UAVs. Then
distributed methods like barycentric coordinate based [13],
geometry based [14] and distributed graph optimization [15]
are used to estimate the 3-DOF position. However, distance-
only methods can not recover the 6-DOF relative states.
In order to recover the 6-DOF relative states among UAVs,
relative poses extracted from common-view images are the
main solutions [18], [19].

Graph optimization methods that minimize re-projection
errors can be utilized to estimate the relative poses among
UAVs through feature point (e.g., ORB features [20]) extrac-
tion and matching of common-view features. The feature
point extraction [20] and object detection [21] can be con-
ducted efficiently on embedded devices, but vision-based
relative pose estimation still needs to solve the itera-
tive graph optimization problem, which needs to consider
the internode communication. In the literature, the dis-
tributed graph optimization routine has been investigated [16],
[17], which contains key steps of distributed initializa-
tion of agent states, state propagation and convergence
analysis.
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Fig. 1. An image taken by the camera on a UAV. The red boxes are the results
of object detection. The red points are the extracted ORB feature points.

But existing studies mainly consider the computation part.
How to design a communication efficient scheme to support
the distributed computation has been rarely reported, which
is a crucial problem especially when vision data is involved.
On the one hand, the UAV networks are highly dynamic,
which need low-latency state updates. On the other hand, the
vision data needs considerable time to be transmitted even
after object detection and feature extraction, and the iterative
distributed state estimation needs to transmit the updated states
repeatedly among nodes before converging. Several existing
works [17], [22] adopt an asynchronous iterative scheme
to handle communication and state iteration, that all nodes
compute and communicate asynchronously. However, existing
works have not considered optimizing the communication
scheduling to improve the convergence speed and the accuracy
of the distributed algorithms. In this paper, we show that effi-
cient communication schemes and distributed graph optimiza-
tion schemes can be jointly designed for low communication
cost, low latency, and accurate vision-involved relative state
estimation in UAV networks. The key contributions are as
follows:

(1) Using UWB as the inter-UAV distance measurement
module and the onboard camera for UAV detection and envi-
ronment feature point detection, a practical graph optimization
model based on multiple feature fusion for UAV relative state
estimation is introduced. In particular, a patch-based local
graph optimization model (PBM) is proposed, which shows
better performance than the traditional node-based local graph
optimization model (NBM).

(2) A Locating Then Informing (LTI) scheme is proposed
for communication efficient state initialization. In LTI, after
the neighbors of the root obtain their initial locations, they
send their local measurements to neighbors. Then neighbors
can start initialization. Eventually, all nodes obtain their initial
states and construct their local optimization graphs, and each
node sends data only once during this process.

(3) Then for online distributed state estimation, a RIPPLE-
like state update and propagation method is proposed, which
takes advantage of both the traditional sequential and paral-
lel state updating schemes while avoiding their drawbacks.
It helps the distributed graph optimization to converge both
quickly and accurately.

(4) We analyze the communication cost in state initialization
and distributed iteration processes. The performances of the
proposed PBM + RIPPLE scheme are compared with the
centralized method and five other distributed methods by
simulations conducted by AirSim [23] (a widely used UAV
network simulation platform). The results show that PBM +
RIPPLE provides localization accuracy close to the centralized
method and outperforms the other distributed optimization
methods regarding communication cost, latency, and accuracy.

The remaining sections are organized as follows. Related
works will be presented in Section II. The network and
perception model are introduced in Section III. A communica-
tion efficient initialization scheme is presented in Section IV.
RIPPLE-like communication efficient distributed state itera-
tion is introduced in Section V. The evaluation results are
presented in Section VI and the paper is concluded with
remarks in Section VII.

II. RELATED WORK

In recent years, more and more research has been attracted
on how a group of UAVs collaboratively locate and perceive
the environment. Distributed relative state estimation is one of
the fundamental problems in these studies. Existing algorithms
mainly focus on measurement methods and relative state
estimation algorithms. We, therefore, introduce related works
according to the measurement models and algorithms they
proposed.

1) Measurement Models: For UWB-based methods in
[24], [25], [26], [27], and [28], they utilize UWB distance
measurement to estimate the relative states sometimes with
the help of odometry information. However, the estimation
results from distance measurement are mainly 3-DOF loca-
tions, which cannot infer the 3-DOF poses of the UAVs.

In object-detection-based methods, each UAV uses the
onboard camera to observe other UAVs in the field of view.
Notably, cameras are inherently bearing sensors. Yang et al.
[29] studied the pose state estimation of UAV based on a single
image of a typical landing pad which consists of the letter “H”
surrounded by a circle. In the system proposed by Saska et al.
[30], each UAV is equipped with a marker for detection using
pattern recognition. However, marking in the environment or
carrying marks on UAVs is not always practical. Yang et al.
[18] and Nguyen et al. [19] proposed probability and filtering
methods for relative state estimation. However, these methods
have limited accuracy. Generally, the method based on object
detection will be limited by the FOV of the camera and will
fail in some network topologies.

The feature-based methods in [31] and [32] detect the
feature points in the environment and restore the relative states
between UAVs through the matching of feature points. These
methods rely on reliable visual feature point extraction.

Because each sensing technology has its own limitations,
recently, the fusion of multiple measurement methods has
attracted attention. The system studied by Xu et al. [7] intro-
duces decentralized visual-inertial-UWB fusion for relative
state estimation and achieves good accuracy. In [10], Xu et al.
proposed an improved algorithm by using more cameras on
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the basis of the previous methods, and the environmental
landmarks were considered. However, these systems require
each UAV to have very high computing power and many
pieces of sensor equipment. Moreover, they assume that there
is all-to-all communication between UAVs. Therefore, there
are restrictions on the scale of the UAV network.

2) Centralized and Decentralized Algorithms: To accom-
plish the state estimation in UAV networks, existing collab-
orative localization techniques can be classified into three
categories, i.e., centralized, decentralized, and distributed.

In centralized systems, all the data measured by the agents
will be sent to and be processed at a central station (or a
central UAV) [24], [33], [34]. Common view feature extraction
and graph optimization will be conducted at the central server.
For range-only based UAV network relative localization, Wang
et al. [35] proposed network formation calculation methods
using global rigid graph component stitching for pursuing
accurate and robust localization performances. Ping et al. [36]
investigated conditions and algorithms for accurate localiza-
tion in sparse networks, which is suitable for UAV networks
because the distance measurements in UAV networks are gen-
erally sparse. After the central server sends back the estimated
results, every agent obtains its states [37]. But long-distance
visual data transmission and centralized processing will cause
a certain delay, which is unsuitable for the high-speed UAV
network. Another issue is that once the central station is dam-
aged or some communication links are blocked, the relative
positions of some UAVs will be lost.

In decentralized approaches, the data processing and com-
putation are distributed to several representative agents in
the group. Each representative agent manages a group of
agents. Data is collected to the representative agent, and the
states of members are calculated. The decentralized methods
introduced in [7] and [10] are flexible and robust. However,
each representative node needs the ability as the central node.
The decentralized methods also involve considerable latency
for multi-hop visual data collection. Another problem is that
the representative nodes consume energy much faster.

3) Distributed Algorithms: Fully distributed approaches
have also been investigated in the literature. Although position-
ing is a nonlinear problem, Safavi [38] discussed a cooperative
linear distributed iterative solution with only local measure-
ments, local communication, and local computation needed at
each agent. The distributed linear iteration methods are based
on barycentric coordinate representations of node locations
and are sensitive to measurement noises [13], [39]. Recently,
Ping et al. [40] investigates the node localizability problem
in barycentric coordinate based distributed localization and
shows that the localizable nodes should be detected at first
for correct convergence of the distributed algorithm. Mean-
while, the convergence speed is slow, limiting this method’s
application scope.

Because each UAV has the ability of observation, decision-
making, and autonomous movement, the UAV network is
regarded as a multi-agent reinforcement learning system in
some research work [41]. Peng et al. [42] introduced how
to solve the localization problem with deep reinforcement

learning in a distributed manner without a central controlling
unit. However, the method has a large number of parameters,
and their portability has not been proved.

Graph optimization is one of the fundamental techniques for
simultaneous localization and mapping (SLAM). It is widely
used in the localization of UAV swarms. However, the central-
ized graph optimization method is unsuitable for large-scale
and fast-moving UAVs for the drawback of communication
and computing power, while distributed graph optimization
performs well. For the distributed perspective, Cheng et al.
[15] proposed a distributed algorithm for sensor localization
based on the Gauss-Newton method. However, it can only
estimate the 2D position by only distance measurement.
In DDF-SAM [16] and DDF-SAM2 [12], each agent saves an
optimization graph of its surrounding neighbors and optimizes
it. Choudhary et al. [43] introduced the Distributed Gauss-
Seidel (DGS) approach, which is used in SLAM systems
[44], [45]. This method transforms the graph optimization
problem into a linear problem and then solves it in a distributed
Gauss-Seidel algorithm. Tian et al. [17] proposed the ASAPP
(asynchronous and parallel distributed pose graph optimiza-
tion) method based on distributed gradient descent. It takes
communication into account and solves the problem in an
asynchronous way. Chang et al. proposed Kimera-Multi [46]
for multi-robot SLAM utilizing ASAPP.

4) Considerations on Communication: Although distributed
graph optimization needs iterative state updates and repeatedly
local communication to solve, few works have considered
the communication aspect. ASAPP in paper [17] designs
a communication mode based on the Poisson clock in the
communication part to support the distributed optimization.
When a Poisson clock cycle ends, the node communicates with
its neighbors and sends the latest updated results. In essence,
the method is still the parallel iteration in divided time. The
method proposed by Bedi et al. [22] considers an asyn-
chronous processing architecture with delays introduced by
each node to ameliorate the computational bottleneck associ-
ated with synchronized computation and the communication
rounds among the nodes. But existing work has not considered
optimizing the communication scheduling scheme to speed up
the convergence of the distributed optimization.

Overall, related works focused either on the measurement
models for prototype system development or focusing on
the distributed iterative algorithm design. However, in vision-
involved distributed graph optimization, the data communica-
tion cost and the iteration latency must be considered. Joint
optimization of the communication delay, communication cost,
and estimation accuracy is required.

III. NETWORK AND PERCEPTION MODELING

A. Network Model

We consider an aerial network containing N UAVs, which
are assumed to be flying in areas with weak satellite signals
or in GNSS-denied environments. Each UAV has two sen-
sors onboard: (1) the UWB ranging device, which measures
distances to other UAVs within its ranging scope, and (2) a
camera that captures images. UAV fuses these two kinds of
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Fig. 2. Here is one example of the UAV network. The distance edges can be
built when two UAVs are within a certain distance. For the vision part, UAV
2 is detected by UAV 3 and UAV 4 so that they have the object detection
edges. The environment feature edge between UAV 1 and 2 can be built as
they can see enough of the same field of view.

data for estimating relative 6-DOF states to other UAVs. Each
UAV also equips a communication module. We assume the
communication radius is not less than the ranging radius of
UWB. So there are two underlying graphs in the UAV network:
(1) the communication graph and (2) the observation graph.

The communication graph is assumed to be a simple
Unit Disk Graph (UDG). Two UAVs can communicate with
each other when they are within communication scope. The
observation graph is composed of different kinds of links. A
“distance link” exists between two UAVs if they are within
the UWB’s ranging scope. The vision data constitutes two
kinds of links. The first kind, which is constructed by UAV
detection [21] from the captured images, is called the “object
detection link”. The second kind is constructed by common
views to environment features, which is called “common view
link”. A detailed introduction of these links will be given in the
perception model. Fig. 2 shows an example of a UAV network
and its related communication and observation graphs. The
green dashed lines show the communication links. The solid
blue lines are the distance links. The brown cones indicate
the object detection links, and the yellow links are the links
formed by common views of environment features.

For relative state estimation, we assume the UAVs are
numbered from 1 to N . The body frame of UAV i is defined
as bXi. The global frame is defined by the real-time body
frame of UAV 1 without loss of generality. wXi describes
the state of UAV i in the global frame. We denote the
transformation from the body frame of UAV i to its global
frame by T i

wb, which includes the rotation (wXi)R ∈ SO(3)
and the translation vector (wXi)t ∈ R3. The relative state
estimation problem is to estimate the realtime states of UAVs,
i.e., wX = {wX1,w X2, . . . ,w XN}.

Note that this paper focuses on the communication and
computation scheduling in the application layer. It assumes
there is a proper MAC protocol to handle the collision
avoidance problem in data transmission. Recent work in MAC
layer [47], [48] can be explored to support the time-division
neighborhood data transmission. The UAVs are also assumed
to be synchronized via wireless time synchronization protocol
[49], [50]. The time delays for communication and collision
avoidance are also carefully counted in the communication
time analysis and are simulated in a time-division manner in
the simulations.

B. Perception Model

1) Distance Function Model: For UWB measurements,
each UAV measures the distances to the neighboring UAVs.
Let d̂ij be the measured distance between UAV i and j if
they are in the measurement threshold Duwb. The value d̂ij is
modeled with a Gaussian noise:

d̂ij = ∥(wXi)t − (wXj)t∥+ N(0, σ2
d) (1)

where (wXi)t means the translation part of the state, σd is
the standard deviation of distance measurement noise, and the
∥·∥ denotes the second norm of the vector.

2) Reprojection of Detected UAVs: For the camera on each
UAV, let us denote the focal length is f and the image size is
L × W . The center point coordinate in the pixel coordinate
system is (cx, cy). The camera intrinsics matrix K can be
obtained from the above parameters. The camera frame is
defined, and the transformation from the camera frame to the
body frame is T i

bc on the ith UAV, which is offline calibrated.
The images extracted from the camera are utilized to perform
object detection and feature points extraction.

By onboard target detection module YOLO-lite [21], a UAV
can detect other UAVs from its captured image if other UAVs
appear in the image. The UAV detector will return the 2-D
bounding box of the UAVs in the image plane. We consider
that by image-based ID embedding [51], the detector can
return the ID of the detected UAV. For example, if the UAV i
detects the UAV j from its captured image, we can get a 2-D
bounding box of UAV j from the image captured by i. The
center pixel point of the bounding box is denoted by uj .

According to the pin-hole camera model [52], we can
formulate the reprojection coordinate ûj on UAV i’s image
plane:

ûj =
1
sj

K cYi,j =
1
sj

K(T i
wbT

i
bc)

T wXj (2)

where sj is the depth of UAV j relative to UAV i’s camera
center, and cYi,j means the position of UAV j in the camera
frame of UAV i. Note that cYi,j = (T i

wbT
i
bc)

T wXj , where
T i

wb is the transformation matrix from body frame to world
frame on UAV i; T i

bc is the transformation matrix from camera
frame to body frame on UAV i; and wXj is the world frame
coordinates of UAV j.

3) Model by Common View Feature Points: We extract the
ORB feature points [20] from the images taken by the camera.
If two adjacent UAVs have enough overlapping fields of view,
they can observe some common environmental feature points.
The relative state can be recovered by performing a brute-force
matching of the feature descriptors.

It is assumed that UAV i and j observe two groups
of M corresponding feature points, which are zi =
{z1

i , z2
i , . . . , zM

i } and zj = {z1
j , z2

j , . . . , zM
j }. For the

sake of argument, we discuss in the local coordinate system of
UAV i. The 3-D positions of these M feature points are defined
as P = {P 1, P 2, . . . , P M}. By the projection relationship,
the reprojection errors of all the feature points can be obtained.
The objective function is to optimize the relative rotation and
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Fig. 3. Feature point matching relationship in the perspective of two UAVs.
The ORB feature points are detected. The feature points in the two images
are connected, indicating a matching relationship. The RANSAC algorithm
[53] is used to eliminate the wrong matching for higher accuracy.

translation, i.e., R̂c
ij, t̂

c
ij to minimize the reprojection error:

R̂c
ij, t̂

c
ij = min

P,R̂c
ij ,t̂c

ij

M∑
k=1

∥∥∥∥ 1
sk

i

KP k − [zk
i ,1]T

∥∥∥∥2

+

∥∥∥∥∥ 1
sk

j

K(R̂c
ijP

k + t̂c
ij) − [zk

j ,1]T
∥∥∥∥∥

2

(3)

where K is the intrinsics matrix of the cameras, R̂c
ij and t̂c

ij

are the relative rotation and translation between two UAVs’
camera frames, and sk

i and sk
j are the depth of feature point

k to the UAV i and to the UAV j.
Equation (3) is a Least-Squares problem that can be solved

by Levenberg-Marquardt(LM) algorithm. As a result, we get
the 3-DOF position of feature points in UAV i’s camera frame
and the relative pose R̂c

ij and t̂c
ij between two UAVs’ camera

frame. Since the camera’s extrinsics relative to the body frame
have been calibrated, the relative state R̂ij and t̂ij between
the body frames of two UAVs can then be obtained.

Using the above network and observation models,
we assume N UAVs fly in a GNSS-denied environment.
Without loss of generality, we use UAV 1’s body frame as the
world frame. Other UAVs want to know their relative poses
to UAV 1, i.e., poses and positions in the world frame defined
by UAV 1.

IV. COMMUNICATION EFFICIENT INITIALIZATION

Since UAVs are flying dynamically, the relative states
among UAVs are updated with short cycles. Before conducting
any periodical state update, there is an initialization phase.
During the initialization, each UAV discovers neighbors and
exchanges measurements to set up its local graph model and
calculates its initial state, which will be used as the initial
state for the first period of distributed iteration. Note that the
initialization needs to be conducted only once. In the later
periods, the states of the last period will be used as the initial
states of this period. The newly captured measurement data
will be transmitted along with the state updating message,
so the local graph model can be updated accordingly in the
distributed iteration process.

The overall routine, including initialization and online dis-
tributed iteration, is shown in Fig. 4. When a UAV is not
initialized, it enters an initialization phase, which constructs
its local graph and obtains its initial states. A Locating
Then Informing (LTI) scheme is proposed for communication
efficient initialization (IV-B). If a UAV has already been
initialized, it will enter the iterative relative state estimation
phase, which will be introduced in Section V-B.

This section introduces the initialization phase. We firstly
introduce two kinds of local graph models, i.e., node-based
and patch-based local graph models (NBM and PBM).

A. Local Graph Model

Each UAV sets up a local graph model for local state
estimation based on its measurements to neighbors and the
measurement information received from neighbors.

1) The Vertices: In local graph model [54], vertices rep-
resent state variables to solve, and edges represent constrains
among the state variables. Local graph optimization essentially
solves the least square problem of the variables represented by
the vertices under the constraints of edges. Considering the
local graph model of UAV i, we firstly introduce the types of
nodes and edges. Then a node-based local graph model (NBM)
and a patch-based local graph model (PBM) are introduced.

In both the NBM and PBM models, the state variables (i.e.
vertices) are wXi and {wXj , j ∈ N(i)}, where j is one of
i’s direct neighbor. These states form the vertices of the local
graph model of the UAV i, which is denoted by Gi. Residue
functions between the states set up the edges in the local graph
model Gi.

2) The Edges: Regarding different kinds of measurements,
there are four kinds of edges in the local graph model. The
distance measurements from i to neighbors contribute the
ranging residual edges, where d̂ij is the measured distance
and ∥(wXi)t − (wXj)t∥ is the distance predicted by states.

Ruwb(i, j) = w1

(∥∥(wXi)t − (wXj)t

∥∥− d̂i,j

)2

(4)

Ruwb(i, j) represents the residue error constructed from the
distance measurement from i and one of its neighbor node j;
w1 is the weight.

Also, the object detection and reprojection constraint is
formulated from Equation (2):

Robj(i, j) = w2(∥uij − ûij∥F )2 (5)

where Robj(i, j) represents the error from reprojection UAV
j in UAV i’s camera frame. ûi,j is the measured pixel
coordinates of UAV j’s center, and ui,j is the predicted pixel
coordinates of UAV j’s center. ∥·∥F means Frobenius norm
and w2 is the weight.

From matching of the feature points, we get the relative
state between UAV i and j: R̂ij and t̂ij . We can construct
two kinds of constrain edges from them. The rotation error
can be defined as:

RfR(i, j) = w3

(∥∥∥R̂−1
ij (wXi)−1

R (wXj)R − I
∥∥∥

F

)2

(6)

where R̂ij is the measured relative rotation and
(wXi)−1

R (wXj)R is the predicted relative rotation. Note that
(wXi)R is the rotation matrix converted from the UAV i’
pose in its state wXi.

However, this translation vector has no scale, but we can
restore the scale through the existing ranging information. The
translation error is:

RfT (i, j) = w4

(∥∥∥d̂ij t̂
c
ij − ((wXi)t − (wXj)t)

∥∥∥
F

)2

(7)
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Fig. 4. The main pipeline for one UAV. Each UAV collects the data from the sensors onboard. If it is not initialized, it enters an initialization phase (IV-B).
If it has already been initialized, the UAV collects the states of neighbors and performs local graph optimization. The results are utilized to update its own
state and broadcast to neighbors. Through iteration, the error is continuously reduced, and an accurate result is obtained.

Fig. 5. Node based model: NBM (left) and patch based model: PBM (right).

where (wXi)t − (wXj)t is the predicted relative position.
(wXi)t is the position part in the state wXi.

3) Node-Based Model (NBM): In the past, localization
methods based on graph optimization mainly adopt node-based
local graph model [7], [10], [43], [55]. In the node-based local
graph model, only the edges between i and its direct neighbors,
i.e. N(i), are considered in the local graph of UAV i. Let
R (i, j) =Ruwb(i, j)+Robj(i, j)+RfR(i, j)+RfT (i, j). So the
sum of residues at UAV i is:

R(wXi)=
∑

j∈N(i)

R (i, j) (8)

However, we find that such a local model does not make
full use of the information between neighbors. Fewer edge
constraints will reduce the accuracy of local state estimation.
Therefore, we propose a patch-based model to improve the
utilization of local information.

4) Patch-Based Model (PBM): In patch-based model, not
only the edges between UAV i and its direct neighbors, but
also the edges among its direct neighbors are considered at
UAV i. So the sum of residues at UAV i is:

R(wXi)=
∑

j∈N(i)

R (i, j) +
∑

j∈N(i)

∑
k∈N(i),k ̸=i,j

R (j, k) (9)

where N(i) is the neighbor set of UAV i. Note that i considers
the residues with direct neighbors and the residues among the
direct neighbors. The difference between NBM and PBM for
the UAV i can be visually seen from Fig. 5.

At UAV i, Equation (8) and (9) can be solved by Levenberg-
Marquardt(LM) algorithm distributively, where the trust region
with sparse normal Cholesky method can be chosen [54].

Fig. 6. The pipeline of initialization for uninitialized UAVs.

B. Initialization Phase

One difficulty of initialization is that all UAVs have no
global states, except for UAV 1, designated as the global
frame’s origin. The key to initialization is to use local infor-
mation and local communication to make UAVs obtain the
initial states relative to UAV 1 in the shortest possible time.

We propose a Locating Then Informing (LTI) scheme for
communication-efficient initialization. For clarity, we intro-
duce the initialization process in PBM. The initialization
process in NBM is analogous.

1) Initialization in PBM: At first, UAV 1 broadcasts its
state. The format of the message is defined by the Initialization
Command and the content is:

[Init_cmd, ID = 1, wX1, {d̂1}, {û1}, {ẑ1}]

where {d̂1}, {û1}, and {ẑ1} represent the set of ranging,
object detection, and feature point extraction measurements
respectively. Once one UAV receives the Init_cmd message
from its neighbors(e.g. UAV 1), it starts to execute the initial-
ization algorithm. For the sake of argument, we take UAV i
as an example to introduce the algorithm as shown in Fig. 6:

1) Local pocessing. After UAV i receives the Init_cmd
from UAV j, it will process the measurement data.
Especially, it matches its local feature point sets {ẑi}
with {ẑj}. If enough matching points are found (enough
common view features), the relative state R̂ij and t̂ij

between the body frames of two UAVs will be deter-
mined. At this time, according to the initialized state of
j: (wXj), UAV i will initialize its state.

wXi = R̂ij ·w Xj + d̂ij t̂ij (10)

2) Propagation. If UAV i completes the state initialization,
it will sends an initialization command to its neighbors.

Authorized licensed use limited to: Renmin University. Downloaded on October 20,2023 at 02:37:38 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: COMMUNICATION EFFICIENT, DISTRIBUTED RELATIVE STATE ESTIMATION IN UAV NETWORKS 1157

The message content is

[Init_cmd, ID = i, wXi, {d̂i}, {ûi}, {ẑi}]

3) Successful initialization or delayed initialization. If
there is distance measurement and at least one kind
of visual observation information between UAV i and
its initialized neighbors, UAV i can be successfully
initialized. If it is initialized, UAV i will broadcast an ini-
tialization command to its neighbors. If the initialization
fails, UAV i will go into delayed initialization state until
a new message that can help it finish the initialization.

4) Local Measurement Graph Construction. After the
node i initializes its states, and obtains measurements
from its direct neighbors, it can set up its local mea-
surement graph using Equation (4)-(7) and (9).

Note that in the measurement set {d̂i}, {ûi}, {ẑi} broad-
casted from a UAV i, it contains the measurements to all its
direct neighbors. So when a node i receives measurements
from a neighbor j, it also receives the measurements from
node j to j’s neighbors, denoted by N(j). So after receiving
initialization messages from the neighbor set N(i), without
additional communication cost, i has known the measurements
among its neighbors’ neighbors. Therefore, in PBM, after
relative state initialization, the only difference with NBM is
the local graph construction step.

In PBM, after a node i receives initialization commands
from its neighbors, it will setup a neighbor list N(i) and
extract its neighbor’s measurements to its direct neighbors,
i.e., measurements among N(i). Based on these information,
the PBM local graph model is constructed.

Remark: we can see that NBM and PBM have the same
communication process and the same communication cost
in the initialization part. The only difference is the local
measurement graph construction, in which PBM utilizes more
measurement information. Later we will see that the denser
local graph constructed by PBM can obtain more accurate
state estimation performance in the experiments.

C. Analysis of Communication Cost in Initialization

In initialization, either in NBM or in PBM, each UAV needs
only to send the initialization command once to its neighbors.
The distances, state, ID number, and message type in the initial
command message occupy constant bytes. The amount of data
sent in the initial command is determined by the number
of perceived neighbors N(i) and the number of collected
environment feature points Nc. Let ∆ be the maximum node
degree. The communication cost in the initialization phase at
each node is O(∆ + Nc).

During the initialization process, N nodes need to send the
initialization message, so the total communication cost of the
system initialization is O (N(∆ + Nc)).

V. DISTRIBUTED GRAPH OPTIMIZATION

In distributed graph optimization, each UAV solves a local
graph optimization problem to estimate local states; broadcasts
and receives local states to (from) neighbors; then updates

local states and continues above state updating and negotiation
steps iteratively until convergence.

There are two critical parts in distributed graph optimiza-
tion: local graph optimization and iteration scheme. The local
graph optimization algorithm is how each node uses the
existing local information to update its current state. The
iterative scheme is how the local states are propagated. We will
introduce two existing naive iteration schemes and propose
a RIPPLE iteration scheme in V-B and present the analysis
in V-C.

A. Local Graph Optimization

In the PBM model, when one UAV constructs the local
measurement graph, a graph optimization algorithm such as
G2O [54] can be applied to update the UAV’s state to best
match the local measurements. Then the UAV will broadcast
its updated states to neighbors and receives neighbors’ states
to form a new objective function. The series of steps is called
one round of iteration for a UAV.

The loop of local state optimization, state transmission, and
the objective function updating will continue until conver-
gence, i.e., when the local states before and after local graph
optimization have a slight difference.

The iterative distributed graph optimization process desires
fewer rounds of iteration and quick state updating in each
round for low latency and communication efficiency. The PBM
model can generally converge in much fewer rounds than the
NBM model. So we will introduce the iteration scheme in the
PBM model only and compare the performances with NBM
in the evaluation section.

B. Iteration Schemes

The iteration process is the key factor affecting the time
duration of state updates before convergence. Traditionally,
there are two major iteration schemes [15]: sequential iteration
and parallel iteration.

Let wX
(p)
i denote the state of UAV i after the pth iteration

has finished. Node i is denoted as i(p). Notably, each UAV only
needs to transmit its updated state information to neighbors
during the iterations without transmitting local measurement
information. This is because the states can converge quickly
before the measurements change much and is also for avoiding
the cost of frequent measurement data transmission.

1) Sequential Iteration Scheme: For the sequential itera-
tion scheme, the UAV executes the local graph optimization
algorithm in sequence according to the UAV ID [15]. The
node with the smaller ID calculates local states by local graph
optimization at first and then sends its state to its neighbors.
Only after node i updates its state will the node i+1 update its
state by local graph optimization using the updated neighbor
states.

When UAV i wants to update in round p + 1,
{wX

(p+1)
j , j ∈ N(i), j < i} is available. For the rest of

neighbors with ID larger than i, the states that are still in the
last iteration, i.e., {wX

(p)
j , j ∈ N(i), j > i} are available.

So i uses the partially updated states in its neighborhood to
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update the error function. The error function has three parts:

R(i) =
∑

j,k∈N(i),j<i,k<i

R(j(p+1), k(p+1))

+
∑

j,k∈N(i),j<i≤k

R(j(p+1), k(p))

+
∑

j,k∈N(i),i≤j,i≤k

R(j(p), k(p)) (11)

This equation is equivalent to Equation (8), but the difference
is that the iteration flag, i.e., (p) and (p + 1) are added
to indicate the states of the nodes. By solving it, we get
wX

(p+1)
i and node i broadcasts its updated state. Then node

i + 1 updates its state sequentially.
2) Parallel Iteration Scheme: For the parallel iteration

scheme, in round p+1, all UAVs will not wait for the updated
states of neighbors. They use neighbors’ states from the results
in the last iteration and update their states in parallel. So for
all UAVs, the objective function in round p + 1 is built by
{wX

(p)
j , j ∈ N(i)}. The object function is defined as:

R(i) =
∑

j,k∈N(i)

R(j(p), k(p)) (12)

All UAVs minimize this cost function to get the values of
wX

(p+1)
i and then update the states in round p+1 in parallel.

These two methods both have their advantages and draw-
backs. In sequential iteration, each UAV uses the updated
states of neighbors with ID less than it in each round, which
generally needs fewer rounds to converge. However, all UAVs
update state in order, so it takes longer time to complete a
round of iteration. In particular, when the number of UAVs is
large, the system cannot ensure real-time performance. The
UAVs can update states in parallel in the parallel method,
so one round iteration can be finished more quickly. Never-
theless, the UAV cannot utilize the new states of neighbors in
the current round, resulting in that the network states generally
need more rounds to converge. The transmission of the updated
states in the current round also takes considerable time.

3) RIPPLE Iteration Scheme: To overcome the problems in
sequential and parallel iteration schemes, we propose RIPPLE,
an iteration scheme with the advantages of sequential and
parallel iteration but can avoid their limitations.

In RIPPLE, nodes can use the updated states of some
neighbors, and some nodes can execute the algorithm in
parallel. It is called RIPPLE because the order of state update
in the network is similar to the water ripple. We take node
1 as the starting point of the iteration. Neighbors in the same
hop are defined in the same layer. From a global perspective,
all nodes will be divided into different layers (Fig. 8). In other
words, node 1 is taken as the root node to form a width-first
spanning tree. The layer of the spanning tree is equivalent to
the layer of the iteration algorithm.

When a node completes this round of iteration, it will
communicate with its neighbor nodes to send the updated
states. In the first round of iteration, node 1 (layer 1) starts
the iteration first and sends the state information to the direct
neighbors, i.e., the nodes of layer 2. Then nodes in layer
2 update their states in parallel and inform their updated states

to nodes in layer 1 and layer 3. Then nodes in layers 1 and
3 will update their states in parallel and inform their updated
states to neighbors. Then nodes in layer 2 and layer 4 will
update in parallel and the process will continue.

After all nodes have completed the first round of iteration,
we can discuss the iteration order by parity. We denote that
layL is a set of nodes in layer L. When the node i from layer L

starts iteration in round p+1, {wX
(p+1)
j , j ∈ N(i)∩layL−1}

and {wX
(p)
j , j ∈ N(i) ∩ layL ∩ layL+1} are available at it.

From the global view, neighbors in the even (odd) layers listen
to the updated states of the odd (even) layer neighbors, and
all nodes in even (odd) layers update their states in parallel.
Fig. 7a shows one example of RIPPLE partly and Fig. 7b
explains the iterative process from the time dimension. This
process repeats until states converge.

The cost function of RIPPLE scheme is therefore can be
written as:

R(i) =
∑

j,k∈N(i),j,k∈layL−1

R(j(p+1), k(p+1))

+
∑

j,k∈N(i),j∈layL−1,k∈layL∪layL+1

R(j(p+1), k(p))

+
∑

j,k∈N(i),j,k∈layL∪layL+1

R(j(p), k(p)) (13)

where node i is in the layer L.
When the error function change of a UAV is less than a

preset threshold, the UAV can stop iteration and get the final
state results.

C. Analysis of the Iteration Schemes

Generally, the format of the message sent by the UAV i
after iteration p+1 is defined as [StateRefresh_cmd, ID =
i, wX

(p+1)
i , p + 1]. The message itself has a constant size.

We mark its size as O(M). For the RIPPLE iteration scheme
and the other two, the condition for each UAV to stop iteration
is that the difference of the objective function is less than
a certain threshold. From then on, the UAV stops executing
the local graph optimization and sending StateRefresh_cmd.
Suppose the UAV group stops the algorithm after P iterations.
Therefore, the communication cost per UAV is O(PM).

As the iteration order in the three methods is different, the
total time spent by the system and the communication cost
to execute the algorithm are also different. Assume that the
computation time for a UAV to execute one round of local
graph optimization algorithm is O(d). The time to transmit
the state data is O(s). Suppose the maximum node degree is
∆. The maximum number of neighbors in the same layer is
denoted by ∆L. It is obvious that ∆L < ∆.

In the sequential method, all nodes must be executed
sequentially in order, so the time is O(PN(d+s)). In contrast,
the time cost of the parallel method is O(P (d+∆s)). ∆s is the
updated state transmission time considering time-division col-
lision avoidance with neighbors. For the RIPPLE scheme, sup-
pose the number of layers of the network is h. Then the time
of RIPPLE scheme is O (2(P − 1)(d + ∆Ls) + h(d + ∆Ls)).
This can be seen from the explanation in Fig. 7a. After the
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Fig. 7. One example of the RIPPLE iteration strategy. In (a), node 1 is the first layer. Nodes 2, 3, and 4 are in the second layer and nodes 4 and 5 are in
the third layer. A colored UAV node indicates that it is executing the algorithm. Different colors represent different rounds of iteration. In (b), the numbers in
the rectangles represent which layer is executing the algorithm. For example, at time t1, layer 1 is executing the first iteration. At t5, node 1 starts the third
iteration; layer 3 nodes are updating their states in the second iteration, while layer 5 nodes are executing their first iteration.

first h iterations, the odd and the even layer nodes update
states interchangeably for 2(P−1) iterations. So the total time
of RIPPLE is proportional to P and h. which is comparable
with the parallel method and is much less than the sequential
method.

VI. EXPERIMENTS

A. Experiment Setup

We conduct experiments on a widely used multiple-UAV
simulation platform, i.e., AirSim [23]. AirSim provides the
ground truth of UAVs’ states, so it is very convenient for
evaluating the state estimation accuracy. Moreover, large-scale
UAV clusters can be simulated on the simulation platform.
In the experiment, we have adopted a series of experimental
parameters that are in line with reality. The experiment scenar-
ios are simulation environments provided by AirSim, which
are available at https://github.com/microsoft/AirSim/releases.
Each UAV is simulated to equip with a UWB-based ranging
device and a mono-camera mounted on the UAV’s front side.
The camera takes images at 10Hz, and the image size is
960*540 pixels. Local image processing is conducted for each
captured image to extract ORB feature points in the image.
At the same time, YOLO-lite [21] based target detection
algorithm is carried out to extract the bounding boxes of other
UAVs if they appear in the image of the current UAV. The
maximum ranging distance of the UWB device is set to 100m,
and random Gaussian noises are added to the ranging measure-
ments. The distance measurements are assumed symmetric.

For setting up common view measurement edges, ORB fea-
ture brute-force matching is conducted when a UAV receives
ORB feature points from its neighbor. A common view edge
is set up only when more than 15 pairs of feature points are
matched between the two UAVs. The relative poses between
the two UAVs are calculated by the matched feature points
using 2D-2D geometry, which is used as the common view
measurement edge (Equation 6 and 7).

In the experiments, UAVs are time-synchronized. We use
LCM (Lightweight Communications and Marshalling1) [56]
to simulate efficient and low latency communication between
UAV nodes. The UAVs are simulated to fly in a 3D envi-
ronment, take measurements and update relative states round
by round. Since we focus on relative state estimation by dis-
tributed graph optimization, the UAVs have not used odometry
information to update their states. The odometry information
can be incorporated in practical applications.

In the experiment evaluations, we use RMSE(Root Mean
Square Error) [57] metric to evaluate the translation and
rotation error. The translation error of the whole system will
be calculated by:

tE =
√ ∑

wXi∈X

( ˆ(wXi)t − (wXi)t)2/N (14)

where ˆtXi is the translation part of the state estimation result
and tXi is the translation part of the ground truth.

1https://github.com/lcm-proj/lcm
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Fig. 8. Nodes are divided into corresponding layers. Node 1 is in the first
layer, nodes 2, 3, and 4 are in the second layer, and the third layer contains
nodes 4 and 5. Other nodes continue to be divided according to the same
rules.

Similarly, the rotation error is defined as:

RE =
√

1
N

∑
Xi∈X

∑
s=0,1,2

((wX̂i)Rs
− (wXi)Rs

)2 (15)

where R0, R1, R2 represent the rotation angles of the UAV in
three orthogonal directions. The translation error is in meters
and the rotation error is in degrees.

B. Initialization Performances of Measurement Graphs Using
Different Local Graph Models

In the very beginning, only UAV 1 knows its states,
which is used as the reference coordinate system. In the
LTI initialization method, the UAVs take measurements, share
the measurements with neighbors using the Init_Cmd, and
initialize their relative poses to UAV 1. For the entire system,
initialization needs to be performed only once. Subsequent
iterations can take the result of the previous iteration as the
initial value.

One of the key functions in the initialization phases is
each UAV sends its locally processed measurement data to
neighbors, so that each UAV can establish its local graph
model based on the newly captured measurements of itself
and that of its neighbors. The local graph model is the basis of
iterative graph optimization. The differences of the constructed
local graphs in NBM and PBM are compared when the number
of UAVs is different.

The average number of different types of edges in the
constructed local graphs in these two models are compared
in Table I. The average number of the edges in PBM is
obviously higher than that in NBM. The last column compares
the local measurement graph construction time. PBM uses
slightly more time than NBM and both of them have good
real-time performance. Since PBM contains more more local
information, we use PBM model in the following experiments.

C. Distributed Graph Optimization

For testing the performances of different distributed graph
optimization methods, we combine the PBM model with
three distributed iteration schemes, i.e., RIPPLE, sequential,

TABLE I
COMPARISON OF INITIALIZATION WITH DIFFERENT NUMBERS OF UAVS

and parallel. The performance of the centralized method is
also considered. We also compare our method with the two
SOTA distributed graph optimization methods. The compared
methods are briefly introduced as follows:

1) Centralized: All data are collected to a central server
and centralized graph optimization is applied.

2) PBM + Parallel: The local graph contains the edges
with the direct neighbors and the edges between the
direct neighbors. Parallel iteration scheme is adopted.

3) PBM + Sequential: The local graph contains the edges
with the direct neighbors and the edges between the
direct neighbors. Sequential iteration scheme is adopted.

4) PBM + RIPPLE: The local graph contains the edges
with the direct neighbors and the edges between the
direct neighbors. RIPPLE iteration scheme is adopted.

5) DGS [43]: DGS is a state-of-the-art synchronous dis-
tributed graph optimization method, which is also used
in the multi-robot SLAM system [45]. In DGS, the
nonlinear graph optimization problem is transformed
into a linear system, solved by the distributed Gauss
Seidel method.

6) ASAPP [17]: Asynchronous Stochastic Parallel Pose
Graph Optimization (ASAPP) is the first asynchronous
algorithm for distributed graph optimization in multi-
robot localization. ASAPP uses Riemannian optimiza-
tion to solve the rank-restricted relaxations of graph
optimization and applies Poisson clock to control asyn-
chronous iteration.

1) Accuracy Performance: At first, we compare the accu-
racy performances of different distributed methods. The
results of the average translation error, rotation error, and
time-consuming of the algorithm are shown in Table II. The
data are all from the Airsim simulation platform. The basic
settings are the same with those in VI-A. In ASAPP, the
stepsize is γ = 5× 10−4 and the rate parameter is λ = 1000,
which are the same as in its paper.

As can be seen from the results, under the circumstance of
no global information for each UAV, the estimation results
of distributed methods are comparable to the centralized
approach. In comparing of the iteration schemes, the efficiency
and accuracy of the three strategies are different. Generally
speaking, the parallel scheme is the fastest, and the sequen-
tial scheme is the slowest. However, the sequential scheme
generates a more accurate pose estimation than the parallel
scheme. The RIPPLE scheme performs well in both speed
and accuracy. Its time latency is comparable to the parallel
scheme, which is much shorter than the sequential scheme. Its
accuracy is also as good as the sequential method. Among the
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Fig. 9. Convergence speed of different methods on 20 UAVs. For convenience of observation and comparison, the convergence results of PBM + RIPPLE
method and other baselines are shown in (a) and (b) respectively. The vertical dotted line indicates that the error change of the corresponding distributed
algorithm is small enough to stop the iteration.

Fig. 10. The convergence trails of PBM + RIPPLE method with 20 UAVs.

methods proposed in this paper, the PBM + RIPPLE method
achieves the best balance between localization accuracy and
low latency.

Compared with DGS and ASAPP, in the small-scale cluster
of 5 UAVs, DGS and ASAPP perform best. The results of
PBM + RIPPLE method are not in the first place but still
comparable with the best methods. However, in large-scale
clusters, such as when there are more than 10 UAVs, PBM +
RIPPLE algorithm performs better than DGS and ASAPP in
accuracy and time.

2) Convergence Process: Fig. 10 shows the convergence
trails of PBM + RIPPLE with 20 UAVs. The UAVs’ relative
states change quickly in the first several iterations. They
converge fast to be close to the ground truth. The comparison
of the ground truth and the convergence result is shown in
Fig. 11.

The convergence speed is a critical performance for UAV
network relative state estimation. A comparison of the con-
vergence speed and accuracy of different methods is shown in
Fig. 9a and Fig. 9b. For 20 UAVs, there is nearly no difference
in the convergence speed between the RIPPLE iteration and

Fig. 11. The convergence result of the PBM + RIPPLE algorithm
for 20 UAVs at a certain time. The ground truth and the estimation value
are connected by a straight line.

the parallel iteration schemes. Nevertheless, PBM + RIPPLE
provides better accuracy than PBM + Parallel. Sequential
iteration and centralized method need more time to converge.
Besides, the accuracy of the method using PBM is higher than
that using NBM.

3) Communication Analysis: Communication efficiency is
also critical as it plays a vital role in low latency and quick
convergence. The measurement information has been sent once
for each node in the initialization phase in each round. In the
iteration process of distributed graph optimization, UAV nodes
only send and receive state information among neighbors. The
node will receive information, update the state, and then send
the latest state to neighbors in each iteration.

Similar to the communication experiment during initializa-
tion, we count the number of packets sent by each UAV in
the distributed iteration phase, which is treated as the com-
munication cost. The communication costs of three iteration
schemes are compared, and the results are shown in Fig. 12.

The communication cost is determined by the number of
iterations to a certain extent because the UAV needs to send it
in each iteration. As the RIPPLE method can converge more
quickly than the parallel method, it uses less communication
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TABLE II
COMPARISON OF RELATIVE STATE ESTIMATION OF FIVE KINDS OF DISTRIBUTED METHODS AND

CENTRALIZED METHOD WITH DIFFERENT NUMBERS OF UAVS

Fig. 12. Comparison of Communication Costs of Different Methods.

than the parallel method. In RIPPLE, the UAV does not need to
wait for neighbors with smaller ID, so it is also more efficient
in communication time than the sequential method.

D. Localization Robustness Performances

We also evaluate the robustness of the proposed methods.
We simulate the cases when some kind of sensor data cannot
be collected. 10 UAVs are used in the experiments, and
PBM + RIPPLE schemes are chosen. The topology of the
network is the same as that in the experiment on accuracy
performance(VI-C.1). Table III shows the average perfor-
mances of relative state estimation when one type of particular
measurement edge is absent. It shows the robustness of the dis-
tributed graph optimization method regarding different combi-
nations of the sensing data. In the experiments, when one kind
of observation is missed, the distributed graph optimization
model can still converge although the accuracy is reduced.
In case of losing the UWB measurements, it has less impact

TABLE III
COMPARISON OF RELATIVE STATE ESTIMATION WITH 10 UAVS WITH

PATCH-BASED MODEL AND RIPPLE ITERATION SCHEME

on the rotation error but has an evident impact on the transition
error. Losing the target detection measurements impact more
on the rotation error. The absence of common-view edges
impacts both the transition and rotation errors. These results
are consistent with our common sense.

E. Localization Performance vs. Network Sparsity

Another situation that needs to be analyzed is how the
distributed optimization methods perform when the the net-
work is sparse. In order to evaluate different methods’ perfor-
mances in different degrees of network sparsity, we conduct
an experiment using 20 UAVs with the RIPPLE scheme.
Starting from a dense network, each UAV just takes random
Brownian motions. This is simulated by letting each UAV take
a Gaussian distributed random motion (zero mean, t variance)
in each step. As time passes, the UAVs will become scattered
and the network becomes sparser and sparser.

Fig. 13a, Fig. 13b, and Fig. 13c show the network topologies
in three different time slots, in which the UAV network
becomes more and more sparse. When the distances among
UAVs increase, the local measurement graph of each UAV
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Fig. 13. (a), (b) and (c) are the UAV networks in the simulation scene. The red line indicates measurement and communication between the two UAVs. The
UAVs in (a)(b)(c) move more and more away from each other, making the distance between UAVs expand continuously. (d) is the number of measurements
as the average distance changes; (e) shows the translation and rotation errors when the network becomes sparse over time.

become sparser for both the NBM and PBM models. The
measurements from both UWB and environment common
view will decrease significantly, which is shown in Fig. 13d.
The object detection measurements change slightly which
comes from the fact that some UAVs may leave the field of
view when the distance increases.

As time passes, we evaluate the relative state estimation
accuracy of different methods to evaluate their performances
when the network becomes sparser. The results are shown in
Fig. 13e. NBM + RIPPLE and PBM + RIPPLE methods are
compared.

From the results, both the rotation accuracy and transition
accuracy of NBM + RIPPLE method increase with the
network sparsity, as shown by the blue dashed lines. For
PBM + RIPPLE, the rotation error and the translation error
increase only slightly when t is small, until t is around 15s,
at which the number of common view measurements and the
number of UWB measurements decrease sharply. This results
at a significant increase of the rotation and translation errors.
Overall, PBM + RIPPLE method shows better tolerance
against network sparsity than NBM + RIPPLE method.

F. Localization Performance vs. GNSS Initial Values

The previous discussions and experiments are based on the
premise that there is no global positioning information. How-
ever, in practical application, a few UAVs may be equipped
with GNSS(Global Navigation Satellite System). This part of
UAVs will have better initial values. Different numbers of
GNSS initialized UAVs will affect the convergence results.
We simulate to provide better initial values (GNSS values) for
different numbers of UAVs in the experiment (Fig. 14). The
GNSS values are simulated by adding Gaussian noises (zero

Fig. 14. Comparison of Different Numbers of UAVs with GNSS.

mean, 0.1 variance) to the ground-truth location. The PBM
+ RIPPLE method was tested in a network of 20 UAVs in
the experiment, and the experiment’s setting was the same
as that in VI-A. The experiment results show that with
the increase in the number of GNSS initialized nodes, the
positioning accuracy and the convergence speed can be both
improved. However, the accuracy is no longer improved when
the number reaches a certain threshold, which is mainly due
to the initialization and online measurement noises.

G. Real World Experiments

1) Experiment Settings: To test the algorithm more compre-
hensively, we carried out a real-world experiment. A network
composed of eight nodes is tested. Each node consists of
a Jetson nano, a UWB module, and an Astra Pro camera.
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TABLE IV
COMPARISON OF RELATIVE STATE ESTIMATION IN THE REAL

WORLD EXPERIMENT

Fig. 15. The node containing a Jetson nano, UWB module, and Astra Pro
camera.

Jetson nano is a low-power computer used for computing
and communication, which has a 4-core CPU. The UWB
module is used to measure the distance to other nodes, and the
camera is used to collect RGB images (without depth). We use
ROS(Robot Operating System) to carry out the internode
communication, and the time synchronization is realized in
ROS by Timesynchronizer,2 so that each node can uniformly
receive messages delivered by various topics.

Limited by equipment, we conducted the experiment when
nodes were static to validate the convergence speed and
accuracy of the different algorithms. The ground truth values
of each node are calibrated by laser ranging and manual mea-
surement. The eight nodes form one cluster. They collected the
UWB ranging and image data by subscribing to ROS topics
of other nodes. This constructs a dataset collected from static
nodes in the real environment. The experiment environment
is shown in Fig. 16 and the Nano node is shown in Fig. 15.
The process of setting up the common-view edge between two
Nano nodes using their captured images is shown in Fig. 17.

2) Experiment Results: We then process the dataset to let
each node conduct distributed graph optimization and state
updating as if they are collecting the data in real time. The
localization accuracy after convergence is compared with the
calibrated ground truth. The results are shown in Table IV.

In actual experiments, we pay special attention to the
accuracy and stability of the sensors. Since accuracy of UWB
ranging is higher than the reliability of vision in real exper-
iments, the weight value of the error Ruwb(i, j) is increased
to improve the localization accuracy. It can be seen that the
results obtained from the real-world dataset are analogous to
the simulation results since the simulations in AirSim are also
based on real-time image processing. PBM + RIPPLE shows
slightly better localization accuracy than other methods, which

2http://docs.ros.org/en/api/message_filters/html/c++/classmessage__filters
_1_1TimeSynchronizer.html

Fig. 16. The experiment environment in real world.

Fig. 17. The example of common features and object detection in the
real-world experiment.

mainly benefited from PBM for it uses more edge constraints.
Since the network is small, RIPPLE contributes little to the
convergence speed.

VII. CONCLUSION

This paper investigates the communication efficient, dis-
tributed relative state estimation method in UAV networks.
We combine distance measurement, object detection, and
feature points matching together with only UWB and cam-
eras onboard to obtain the relative states of UAVs using
distributed graph optimization. A local graph model, i.e.,
patch-based model (PBM), is proposed. A communication-
efficient initialization method (LTI, Locating Then Informing)
is proposed to help each UAV obtain the initial state in a highly
efficient way and construct the local graph. We have also
proposed a novel distributed iteration scheme, i.e., RIPPLE,
for communication efficient distributed graph optimization.
Experiments by AirSim and experiments on Nano devices,
show that the distributed graph optimization method provides
accurate results and is comparable to the centralized method.
PBM + RIPPLE outperforms other combinations of local
graph models and iteration schemes in terms of accuracy, low
latency, and robustness. In the future, we will further develop
the experiment system to verify the relative state estimation
performances when the nodes are dynamic. Then we will
consider using the information from more sensors, such as
the Inertial Measurement Unit (IMU), to further enhance the
distributed relative state estimation performances.
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