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Abstract— Multi-object tracking (MOT) on static platforms,
such as by surveillance cameras, has achieved significant
progress, with various paradigms providing attractive perfor-
mances. However, the effectiveness of traditional MOT methods
is significantly reduced when it comes to dynamic platforms like
drones. This decrease is attributed to the distinctive challenges
in the MOT-on-drone scenario: (1) objects are generally small
in the image plane, blurred, and frequently occluded, making
them challenging to detect and recognize; (2) drones move
and see objects from different angles, causing the unrelia-
bility of the predicted positions and feature embeddings of
the objects. This paper proposes DroneMOT, which firstly
proposes a Dual-domain Integrated Attention (DIA) module
that considers the fast movements of drones to enhance the
drone-based object detection and feature embedding for small-
sized, blurred, and occluded objects. Then, an innovative
Motion-Driven Association (MDA) scheme is introduced, con-
sidering the concurrent movements of both the drone and the
objects. Within MDA, an Adaptive Feature Synchronization
(AFS) technique is presented to update the object features
seen from different angles. Additionally, a Dual Motion-based
Prediction (DMP) method is employed to forecast the object
positions. Finally, both the refined feature embeddings and
the predicted positions are integrated to enhance the object
association. Comprehensive evaluations on VisDrone2019-MOT
and UAVDT datasets show that DroneMOT provides substantial
performance improvements over the state-of-the-art in the
domain of MOT on drones. The code will be available at
https://github.com/PenK1nG/DroneMOT.

I. INTRODUCTION

Multi-object tracking (MOT) is a critical task in computer
vision, which has a wide range of applications in autonomous
driving [1] and video surveillance [2]. The goal of MOT
is to find the trajectories of objects through continuous
observations by cameras. MOT methods can be broadly
categorized into two paradigms: tracking-by-detection [3]–
[7] and tracking-by-regression [8]–[10]. Currently, due to the
great success of deep learning-based object detection [11]–
[13], tracking-by-detection methods [14] [4], which firstly
detect objects in each frame and then associate the detections
with the trajectories, have a leading performance in MOT.

MOT has shown impressive performance for static cam-
eras [15]–[17]. However, when applied to drones or un-
manned aerial vehicles, the performance of existing MOT
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Fig. 1. Challenges of MOT on drones. (a) comparisons be-
tween conventional MOT datasets(MOT17/20) and drone-based MOT
datasets(Visdrone2019-MOT and UAVDT). The x-axis represents the av-
erage change in the pixel position of the same object in adjacent frames. In
contrast, the y-axis represents the coefficient of variation (variance/mean) of
the object’s bbox size. (b) Visualization of these challenges, encompassing
small-scale objects, large pixel offsets, and varying angle views.

methods decreases significantly [18]. This decrease in per-
formance is attributed to the difficulty in accurately detecting
objects and associating them with their trajectories. These
challenges are inherent to MOT-on-drone scenarios, as il-
lustrated in Fig. 1. At first, the elevated altitude at which
drones operate often results in smaller apparent scales of
the objects in the footage. Additionally, the swift movement
of drones can introduce motion blur and occlusion into the
video frames. Combining these factors makes it challenging
to detect objects and extract meaningful feature embeddings
[19] [20]. Furthermore, when the drone and the objects
move simultaneously, there can be significant shifts in the
pixel positions of the same object across consecutive frames.
Such irregular movement might also cause objects near the
camera’s edge to appear discontinuously. With the drone in
motion, the same object can be viewed from multiple angles,
leading to inconsistent features. Therefore, data association
based on the coherence of target pixel positions and the
consistency of target features tends to perform poorly under
the dynamic conditions of drones.

Given the significant importance of drone-based object
detection and tracking in various applications [19] [21],
several methods have emerged. One dominant approach
adheres to the tracking-by-detection paradigm, emphasizing
enhancements in drone-based object detection and feature
embedding. For instance, Wang et al. [22] modified YOLOv3
[23] to utilize three different resolution feature maps for
vehicle detection and tracking in UAV videos. UAVMOT [24]
leverages the correlation layer between two adjacent frames
to reinforce ID embedding based on features. Some methods
have been reported to address association issues. Zhang et al.
[25] employ the TNT network [26] for detection and directly
calculate the Semi-Direct Visual Odometry by Multi-View
Stereo for data association. Other studies [27]–[29] utilize
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RTK, IMU, or GPS to directly compute the drone’s poses,
aiming to boost the performance of drone MOT. However,
these methods require additional equipment.

In this work, we rely solely on the image information
and propose DroneMOT, which not only enhances object
detection and feature embedding but also considers simul-
taneous motions of the drone and the objects to improve
the robustness of the data-association. In particular, in the
detection module, we introduce a Dual-Domain Integrated
Attention (DIA), which integrates Spatial Attention and
Heatmap-Guided Temporal Attention to achieve more accu-
rate and comprehensive detections with embedding. In the
data-association module, we propose an innovative Motion-
Driven Association (MDA) scheme considering the simul-
taneous movement of the drone and the objects. In MDA,
we first present a Adaptive Feature Synchronization (AFS)
module that refines trajectory appearance by dynamically
adjusting the feature weights based on the detection scores
and preserving key historical features from different angles of
the same object. Then, we introduce the Dual Motion-based
Prediction (DMP) module. Instead of solely focusing on the
target motion, DMP also takes the drone motion into ac-
count. We decompose the drone’s motion into three primary
components: hovering, translation, and rotation. Combining
the motion of the drone and the motions of the objects, the
trajectory’s pixel position in the subsequent frame is more
accurately predicted. The key contributions are summarized
as follows:

• Dual-Domain Integrated Attention (DIA) is proposed to
enhance the detection and feature embedding of small-
sized, blurred, and occluded objects in videos captured
by drone.

• Motion-Driven Association (MDA) is proposed for ro-
bust data association, which includes AFS to refine the
trajectory appearance and DMP to predict the object
position considering the simultaneous motions of the
drone and the objects.

• Extensive evaluations on the Visdrone2019-MOT [30]
and UAVDT [31] datasets demonstrate that DroneMOT
outperforms the state-of-the-art methods for multi-
object tracking on drones.

II. RELATED WORK

Multi-Object-Tracking on Drone. MOT algorithms are
usually divided into tracking-by-detection paradigms [6],
[7], [32]–[35] and tracking-by-regression paradigms [5], [9],
[36]–[40]. Due to the unpredictable and irregular proper-
ties of the simultaneous movement of drones and objects,
MOT for drones [25], [41] typically adopts the tracking-
by-detection paradigm. This approach first uses a network
to detect objects in each frame and then associates these
detections with the stored trajectories. PAS Tracker [42] uses
an additional ReID network to obtain object features and
combines position, appearance, and size information jointly
to make full use of the object representations. UAVMOT [24]
utilizes the correlation layer [43]–[46] between two adjacent
frames to strengthen the embedding features, and develops an

adaptive motion filter to complete the object ID association
accurately. GLOA [47] proposes a global-local awareness
detector to extract scale variance feature information from
the input frames for the frequent occluded objects. FOLT [48]
adopts a light-weight optical flow extractor to extract object
detection features and motion features at a minimum cost
to improve the detection of small objects. Although some
research has begun to focus on data association, the drone-
based MOT methods are still focused on building powerful
detectors. In this work, we present an integrated framework
tailored not only for the enhanced detection of small, blurred,
and occluded objects but also for data-association strategies
specifically designed to accommodate the motion of drones.
Data-Association. Early MOT approaches, such as SORT
[7], [32], adopt the data-association method. These methods
employ a Kalman filter [49]–[52] to predict an object’s trajec-
tory position in the subsequent frame, serving as the motion
model. Concurrently, a network [53] is utilized to obtain the
object feature embedding, acting as the appearance model.
By integrating both the motion and the appearance models,
data-association is achieved using the Hungarian algorithm
[54]. BoT-SORT [55] utilizes an enhanced Kalman filter and
compensates for camera motion to achieve a more accurate
motion model. OC-SORT [56] uses object observations to
compute a virtual trajectory to correct the error accumulation
of the Kalman filter during the occlusion period. Meanwhile,
some researchers have focused on the appearance model
to get effective and comprehensive features. CorrTracker
[57] uses the correlation layer [58] to calculate the spatio-
temporal correlation of features between adjacent frames,
thereby obtaining more accurate object feature embedding.
GHOST [59] analyzes MOT failure cases and proposes a
combination method of proxy appearance features with a
simple motion model, leading to strong tracking results.
In addition, ByteTrack [60] employs a multi-level data-
association method. The trajectories are first matched with
the detections that have high detection scores, and the
remaining trajectories are matched with the detections that
have low detection scores. In this work, we adopt these
advanced data-association methods and further consider the
motion patterns of drones to specifically design motion and
appearance models for data association on drones.

III. METHOD

DroneMOT is primarily split into two modules: the net-
work module (III-A) for detection and feature embedding,
and the data-association module (III-B) based on the re-
sult of the network module. The image It ∈ RW×H×3

captured by the moving drone at the t-th frame is fed
into the network along with the previous frame image
It−1. The results of the network module, represented by
Ot = {o1, o2, · · · , oi, · · · , oM} consist of M detections
where oi = (bi, si, fi). Here, bi represents the bounding
box (x, y, w, h), si is the detection score, and fi is the
feature embedding vectors. The data association module
takes the detections Ot and all N stored trajectories of
the objects Tt−1 = {T1, T2, · · · , Tj , · · · , TN} as inputs,
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Fig. 2. The overall architecture of DroneMOT. It primarily consists of two modules: the network module (III-A) for online detection and feature
embedding and the data-association module (III-B) to associate detections with stored trajectories of objects.

where Tj =
{
oj1 , oj3 , · · · , ojt−1

}
, and ojt−1

represents the
detection associated with the trajectory j in the t−1-th frame.
The goal of the data association module is to match each
detection with a trajectory, treat the unmatched detections
as the new trajectories, and ultimately produce the final
tracking results Tt. An overview of the proposed DroneMOT
is presented in Fig. 2.

A. Network Module

In the network module, we utilize the DLA34 [61] network
as the backbone, which is an encoder-decoder architecture.
The encoder uses shared convolution layers to extract local
features from images {It−1, It}. After flattening the local
features, these features denoted as {Ft−1, Ft} serve as inputs
to the Dual-Domain Integrated Attention (DIA) module.
DIA module consists of two parts: Spatial Attention and
Heatmap-Guided Temporal Attention.
Spatial Attention. The Spatial Attention layer aims to
augment object features with spatial positional informa-
tion and the relationships between objects, enabling the
network to distinguish different small-scale objects easily.
The effectiveness of the Spatial Attention is illustrated in
Fig. 4(a). To achieve this goal, we firstly add the flattened
local features Ft−1, Ft with a 2D extension of the standard
position encoding [62] to make the features cognizant of their
global positions within the entire 2D image feature space:

F 0
t = Ft + PosEncod. (1)

Then we adopt three multi-head self-attention layers sep-
arately to enhance the spatial relationships and object in-
teractions within the feature maps, thereby crafting a more

spatially aware representation feature FS0
t−1, F

S0
t :

F i+1
t = Norm(F i

t + MultiHead(F i
t , F

i
t , F

i
t )), i = 0, 1,

FS0
t = Norm(F 2

t + MultiHead(F 2
t , F

2
t , F

2
t )).

(2)

where t can be replaced by t− 1, “MultiHead” refers to the
multi-head attention [63] following the query, key, and value,
and “Norm” represents the layer normalization.
Heatmap-Guided Temporal Attention. The temporal at-
tention layer focuses on the evolution of features for the
same object over successive time steps. In aerial tracking,
the presence of motion blur or occlusion often leads to in-
effective temporal contexts. To filter out the regions without
objects and to heighten the feature’s focus on the objects
affected by motion blur and occlusion, we propose to use
the heatmap of the t−1-th frame as the filter’s attention. As
illustrated in Fig. 4(b)(c), this heatmap-guided filter leads
to a more context-aware interpretation of the blurred and
occluded objects detected from the visual sequence.

Specifically, given the adjacent spatial enhanced feature
FS0
t−1, F

S0
t , and the heatmap Ht−1 obtained from the t− 1-

th frame, we acquire the output feature FS2
t of the stacked

multi-head attention layer in the t-th frame:

FS1
t = Norm(FS0

t + MultiHead(FS0
t−1, F

S0
t , FS0

t )),

FS2
t = Norm(FS1

t + MultiHead(FS1
t , FS1

t , FS1
t )).

(3)

Then as presented in Fig. 3, the feature representation F̂S0
t−1

is generated by concatenating the heatmap with the resized
convolutional features, followed by a 1×1 convolution. A
heatmap-guided weight Wt−1 is derived via Global Average
Pooling (GAP) and a feed-forward network (FFN). This



weight is then multiplied with the feature FS2
t , creating a

refined feature representation F f
t guided by the heatmap.

Finally, FT
t is obtained by the multi-head attention:

F̂S0
t−1 = F(Cat(Ht−1,Resize(FS0

t−1))),

Wt−1 = FFN(GAP(F̂S0
t−1)),

F f
t = FS2

t +FS2
t ×Wt−1,

FT
t = Norm(F f

t +MultiHead(F f
t , F

f
t , F

f
t )).

(4)

where F represents a convolution layer, and FFN means a
feed-forward network.

The local feature Ft at the t-th frame, combined with the
results FT

t from the DIA module, is utilized as the input
to the decoder, resulting in the Detection Head. Following
[34], the detection head applies successive convolutional
operations to obtain the heatmap Ht of the objects, which can
be used as the input to the network of the t+1-th frame, along
with the corresponding width, height, and feature embedding.
These form the object detection results and their feature
embeddings, i.e., Ot = {o1, o2, · · · , oM} for the t-th frame.

B. Motion-Driven Association

Motion-Driven Association (MDA) takes detections Ot

in the t-th frame and trajectories Tt−1 from the t − 1-th
frame as inputs. Considering the simultaneous movements
of both the drone and the objects, MDA consists of two
primary components: (1) Adaptive Feature Synchronization
(AFS) and (2) Dual Motion-based Prediction(DMP). Finally,
both the refined feature embeddings and the precise predicted
positions are integrated to enhance the object association to
get the trajectory Tt for the t-th frame.
Adaptive Feature Synchronization. In previous work [32],
[34], the appearance feature vectors of a trajectory only
consider the local feature, which is updated by an Expo-
nential Moving Average (EMA) of the current feature vector
and the historical feature vector. EMA typically requires a
fixed weight coefficient α to control the contribution of the
historical feature vectors.

As an appearance model for data-association, AFS catego-
rizes the features of trajectories into local and key features.
To obtain more accurate local features, we dynamically
adjust the weight coefficient α based on the detection score
of the current frame. In addition, to address scenarios with
sudden changes in target angles or extended occlusions, we
preserve a subset of historical features as key features.

For the local feature, we use the detection score st as
the proxy to dynamically adjust the weight coefficient α in
EMA, which is defined as

f local
t = αf local

t−1 + (1− α)ft,

α = αf + (1− αf )e
(θ−st).

(5)

where αf is a fixed value, usually set to 0.9, st represents
the object detection score, and θ is a detection confidence
threshold to filter out noisy detections. For high-confidence
detections, α approaches αf , increasing its impact on the
local feature.
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Fig. 3. Structure of Heatmap-Guided Temporal Attention.

As for the key features, AFS retains a portion of historical
features for every trajectory. The key features are typically
updated by employing the least recently used algorithm to
store the ten key features.
Dual Motion-based Prediction. Unlike existing methods
such as [34], [55] that only consider the movement of objects,
DMP also incorporates the drone’s motion. We classify the
drone’s movements into three fundamental types: hovering,
translation, and rotation. When the drone hovers, the camera
can be approximated as a fixed camera. We can utilize the
Kalman filter [49] for fixed cameras to predict the trajectories
Tt−1’s position in the t-th frame. When the drone undergoes
translation or rotation, we compensate separately for the
movements of the drone to improve the object-trajectory
association.

Regarding the translation, following [55], we calculate the
affine matrix between two frames and subsequently deter-
mine the position of the trajectories after the affine transfor-
mation. This method, termed Camera Motion Compensation,
effectively compensates for the impact of translation of the
drone on MOT. For rotation, we observed that the shape
of the triangle formed by the object and its surrounding
objects in adjacent frames is almost congruent. Therefore,
the rotation vector of an object can be effectively captured
using the intrinsic features of a triangle: vt = [αt, βt, lt]
for an object in the t-th frame. Here, α, β denote the two
smallest angles of the triangle, while l represents the side
length opposite the largest angle. The triangle is formed by
the object, the farthest object, and the nearest object within
a radius of R pixels.

Finally, by integrating the drone’s hovering and translation
with the objects’ movement, we can predict the trajectories’
positions in the t-th frame. This integration enables us to
compute the IOU cost matrix IC between the predicted object
positions (bounding box with positions) and the detected
object positions. Moreover, we evaluate the cosine similarity
between the rotation vector of the trajectories and that of
the detections, resulting in the rotation cost matrix RC . On
the other hand, the AFS module efficiently calculates the
appearance cost matrix AC based on the minimal cosine



TABLE I
QUANTITATIVE COMPARISONS BETWEEN DRONEMOT AND OTHER METHODS ON VISDRONE2019-MOT TEST-DEV AND UAVDT TEST SET.

METHODS IN BLUE BLOCK ARE MOT METHODS SPECIFICALLY FOR THE DRONE. THE BEST RESULTS ARE MARKED IN BOLD.

Dataset Method Pub&Year IDF1↑ MOTA↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDs↓
SiamMOT [64] CVPR2021 48.3 31.9 73.5 - - 24123 142303 862
MOTR [38] ECCV2022 41.4 22.8 72.8 272 825 28407 147937 959
ByteTrack [60] ECCV2022 40.8 25.1 72.4 446 1099 34044 194984 1590
OC-SORT [56] CVPR2023 50.4 39.6 73.3 - - 14631 123513 986
STDFormer [65] TCSVT2023 57.1 45.9 77.9 684 538 21288 101506 1440
UAVMOT [24] CVPR2022 51 36.1 74.2 520 574 27983 115925 2775
FOLT [48] MM2023 56.9 42.1 77.6 - - 24105 107630 800
GLOA [47] J-STARS2023 46.2 39.1 76.1 581 824 18715 158043 4426

VisDrone2019-MOT

DroneMOT Ours 58.6 43.7 71.4 689 397 41998 86177 1112
DeepSORT [32] ICIP2017 58.2 40.7 73.2 595 338 44868 155290 2061
SiamMOT [64] CVPR2021 61.4 39.4 76.2 - - 46903 176164 190
ByteTrack [60] ECCV2022 59.1 41.6 79.2 - - 28819 189197 296
OC-SORT [56] CVPR2023 64.9 47.5 74.8 - - 47681 148378 288
UAVMOT [24] CVPR2022 67.3 46.4 72.7 624 221 66352 115940 456
FOLT [48] MM2023 68.3 48.5 80.1 - - 36429 155696 338
GLOA [47] J-STARS2023 68.9 49.6 79.8 626 220 55822 115567 433

UATDT

DroneMOT Ours 69.6 50.1 74.5 638 178 57411 112548 129

value discerned between the feature of the detections and
both the local feature and the key features of the trajectories.
Therefore, the final cost matrix is typically formulated by
combining the three cost matrices, represented as:

C = IC + waAC + wrRC (6)

By using a linear sum assignment [54], each detection can
uniquely correspond to a trajectory. Unmatched targets are
treated as new trajectories, yielding the trajectories Tt for the
t-th frame.

IV. EXPERIMENTS
A. Experimental Setup
Dataset. We evaluate the proposed methods using two multi-
object tracking datasets for drones: (1) VisDrone2019-MOT
[30] and (2) UAVDT [31]. They are both developed for
multi-category tracking using drones. The VisDrone2019-
MOT dataset [30] is divided into three parts: a training set
(56 sequences), a validation set (7 sequences), and a test set
(33 sequences). It encompasses ten categories: pedestrian,
person, car, van, bus, truck, motor, bicycle, awning-tricycle,
and tricycle. The UAVDT dataset [31] is explicitly designed
for vehicle object tracking. It is split into two parts: a training
set and a test set, covering three categories: car, truck, and
bus. The video images in this dataset offer a resolution
of 1080 × 540 pixels and showcase various illumination
conditions, including sunshine, fog, and rain.
Metrics. We adopt IDF1 [66], MOTA [67], and ID switching
(IDs) [67] as the primary evaluation metrics to evaluate our
proposed DroneMOT with other state-of-the-arts approaches.
MOTA is computed based on FP, FN, and IDs, which focus
more on the detection performance. And IDF1 evaluates the
identity association accuracy of the tracking results.
Training Details. We train DroneMOT for 30 epochs on six
NVIDIA GeForce RTX 2080ti GPUs with batch size 12. In
the multiple loss functions, we modify the EQ-Loss v2 [68]
to supervise the heatmap. Furthermore, L1 loss and Triplet
loss [69] are separately used to deal with the width and height
of the object and the object ID.

Tracking Details. At the data-association stage, we follow
ByteTrack [60] to set the high detection score threshold to
0.6 and the low detection score threshold to 0.1. In Dual
Motion-based Prediction, wa, wr in Equation. 6 are set to
0.5 and 0.1, respectively. Furthermore, R in AFS module is
set to 100 pixels.

B. Comparison with the state-of-the-art methods

We compare DroneMOT with state-of-the-art (SOTA)
trackers, including those specifically tailored for MOT on
drones including UAVMOT [24], FOLT [48], GLOA [47]
and the generic ones including SiamMOT [64], MOTR [38],
ByteTrack [60], OC-SORT [56], and STDFormer [65]. The
performance results on the two drone-based MOT datasets
are presented in the following sections.
Visdrone2019-MOT. In this dataset, we train using all cat-
egories. However, we adhere to the official VisDrone toolkit
for evaluation, which focuses on five categories: car, bus,
truck, pedestrian, and van—consistent with other trackers.
Our results on the VisDrone2019 test-dev set are presented
in Table I. DroneMOT stands out, achieving the highest
IDF1 score of 58.6%, which is a marked improvement over
competing methods. This score underscores DroneMOT’s
effectiveness in correctly identifying and matching object
identities. Furthermore, DroneMOT excels in detection capa-
bilities, recording the lowest FN count of 86,177. Moreover,
it boasts the highest MT while registering the fewest ML,
emphasizing its precision and consistency in maintaining
trajectory IDs.
UAVDT. The UAVDT dataset presents a more pronounced
bbox variation compared to VisDrone2019-MOT, as evi-
denced in Fig. 1. This characteristic implies that UAVDT is
more challenging in terms of both detection and embedding
tasks. When evaluated on the official server, our results for
the UAVDT benchmarks can be seen in Table I. DroneMOT
continues to set the benchmark, achieving an unrivaled IDF1
score of 69.6% and a commendable MOTA of 50.1%. Ad-
ditionally, DroneMOT outperforms by registering a minimal



TABLE II
ABALATION STUDY ON VISDRONE2019-MOT VALIDATION SET.

Baseline DIA MDA MOTA(%) IDs IDF1(%)
✓ 29.7 1509 38.3
✓ ✓ 33.4 1407 45.1
✓ ✓ 32.4 406 48.9
✓ ✓ ✓ 34.3 218 53.4

TABLE III
ANALYSIS OF THE EFFECTIVENESS OF MDA MODULE. THE BASELINE

USES THE KALMAN FILTER AND EMA TO UPDATE THE FEATURE.

Motion model Appearance model IDs IDF1 IDP IDR
- - 1407 45.1 48.6 42.1

DMP - 229 52.8 57.8 48.6
- AFS 690 46.5 52.8 41.5

DMP AFS 218 53.4 43.0 52.8

129 ID switches, underscoring its expertise in consistently
preserving object identities across sequences.

C. Ablation Study

The baseline model we compared against is FairMOT [34],
which uses DLA34 as its backbone and has the same loss
settings as DroneMOT.
Dual-Domain Integrated Attention. The DIA module,
powered by spatial attention and heatmap-guided temporal
attention, significantly refines feature representation, bol-
stering robustness and accuracy. As evidenced in Table II,
including the DIA module enhances the MOTA and IDF1
scores to 20.4% and 45.1%, respectively. Furthermore, it
results in a decrease in IDs, dropping from 1509 to 1407.
The proficiency of the DIA module is visually represented
in Fig. 4, which underscores its effectiveness in assisting
the network to recognize small-sized, blurred, or occluded
objects.
Motion-Driven Association Module. The integration of the
MDA module plays a pivotal role in enhancing tracking
performance, as evident in Table II. Specifically, we observe
improvements of 4.7% in MOTA and 10.6% in IDF1. More-
over, IDs are significantly reduced, plummeting from 1509
to 406. Delving deeper into the MDA module’s components
in Table III, we find that the DMP component substantially
curtails ID switches, bringing them down from 1407 to
229. Further synergizing DMP with AFS elevates the IDF1
score to 53.4%, underscoring the combined strength of both
components in refining tracking accuracy.

D. Visualization

To showcase the efficacy of DroneMOT, we present
a tracking visualization compared to UAVDT. Particularly
during drone rotations, DroneMOT consistently retains the
trajectory ID of targets, ensuring no loss or mismatch of
IDs, as evidenced in Fig. 5. Even under challenging foggy
conditions, exemplified in Fig. 6, DroneMOT’s DIA mod-
ule proves instrumental in accurately identifying targets —
even the minute ones obscured by fog cover as the drone
ascends. These visual representations highlight how adeptly
DroneMOT adapts to diverse and dynamic conditions, ex-
celling in the MOT task on drone footage.

Without DIA With DIAOriginal Image

(c) Occlusion

(a) Small size

(b) Motion Blur

Fig. 4. Feature map comparison between without DIA and with DIA.

DroneMOT UAVMOT

Lose identity

Mismatch identity

Drone
Rotation

Fig. 5. Visualization of tracking results on the Visdrone2019-MOT dataset
when the drone is rotating rapidly.

DroneMOT UAVMOT

Lost identity

Missed Detection

Drone Rising in fog
Objects Occlusion

Fig. 6. Visualization of tracking results on the UAVDT dataset when the
drone raises in foggy conditions, and the target is obscured by the fog.

V. CONCLUSIONS

In this paper, we introduced DroneMOT, a novel approach
tailored specifically for the challenges presented by drone-
based multiple object tracking. By integrating the proposed
Dual-Domain Integrated Attention, DroneMOT excels in ob-
ject detection and feature embedding, capitalizing on spatial
nuances and leveraging heatmap-guided temporal insights.
Moreover, our Motion-Driven Association scheme delivers
a robust data association method, recognizing the combined
movement of drones and objects. This is further enriched by
our innovative Adaptive Feature Synchronization (AFS) and
Dual Motion-based Prediction modules. Empirical results
validate DroneMOT’s superiority over existing methods for
drone-based MOT.
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[15] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler, “Motchal-
lenge 2015: Towards a benchmark for multi-target tracking,” arXiv
preprint arXiv:1504.01942, 2015.

[16] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler,
“Mot16: A benchmark for multi-object tracking,” arXiv preprint
arXiv:1603.00831, 2016.

[17] P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, I. Reid,
S. Roth, K. Schindler, and L. Leal-Taixé, “Mot20: A bench-
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