
Theoretical Computer Science 939 (2023) 237–249
Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

A fault diagnosis method to defend scapegoating attack in

network tomography ✩

Xiaojia Xu, Yongcai Wang ∗, Yu Zhang, Deying Li

School of Information, Renmin University of China, Beijing 100872, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 September 2022
Received in revised form 17 October 2022
Accepted 22 October 2022
Available online 26 October 2022

Keywords:
Network tomography
Fault diagnosis
Unobserved cut set
Scapegoating attack
Identifiability

The scapegoating attack can cause persistent and inconspicuous performance degradation
in network tomography. Defense of scapegoating attack is therefore a critical problem.
Theoretically, the ideal defending scheme is to add monitoring paths to make all the
links in the network be identifiable. This requires very high monitoring cost, which is
unaffordable. To overcome this problem, this paper proposes a diagnosis-based defending
scheme for scapegoating attack, which diagnoses scapegoating attack when problematic
links are detected by network tomography. The latent fact is that a scapegoating attack
can be launched only when the link set manipulated by the attacker cuts the probing
paths going through the scapegoat links and is not traversed by any monitoring path. This
cut set is called unobserved cut set (UCS). To defense, we propose to find the UCS and
add the minimum number of probing paths to traverse the UCS, so that the condition of
scapegoating attack is broken and the attacking links can be detected if any scapegoating
attack exists. A minimum set cover model is proposed to select the least number of defense
links to cover the UCS, and a polynomial time algorithm is proposed to generate the least
number of probing paths to go through the selected defense links. Evaluations on various
network dataset show the effectiveness of the proposed attack and defense strategies.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

With the continuous development of computer network technology, knowing the internal states of the network (e.g.,
bandwidth, packet loss rate, link delay) timely and accurately is an important requirement in network management. Instead
of directly measuring the elements within the network, network tomography which uses end-to-end path measurements to
infer the internal state of the network [2][3], becomes a promising solution [4][5]. Network tomography deploys a set of
monitors in the network [6], and measures only the end-to-end path performances between the monitors, and then infers
the internal states of links and nodes by solving state recovering functions [7][8][9][10]. It avoids the issues such as high
internal measurement overhead, high measurement cost of the direct measurement methods. A critical problem in network
tomography is the “identifiability” problem, which indicates whether the internal states of the network can be uniquely
recovered by the end-to-end external path measurements.

✩ This is an enhanced and extended version of a paper [1] presented in The 16th International Conference on Algorithmic Aspects in Information and
Management (AAIM 2022). This work is partially supported by the National Natural Science Foundation of China Grant No. 12071478, 61972404. Public
Computing Cloud, Renmin University of China.

* Corresponding author.
E-mail addresses: xuxiaojia@ruc.edu.cn (X. Xu), ycw@ruc.edu.cn (Y. Wang), 2020104230@ruc.edu.cn (Y. Zhang), deyingli@ruc.edu.cn (D. Li).
https://doi.org/10.1016/j.tcs.2022.10.029
0304-3975/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2022.10.029
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2022.10.029&domain=pdf
mailto:xuxiaojia@ruc.edu.cn
mailto:ycw@ruc.edu.cn
mailto:2020104230@ruc.edu.cn
mailto:deyingli@ruc.edu.cn
https://doi.org/10.1016/j.tcs.2022.10.029

X. Xu, Y. Wang, Y. Zhang et al. Theoretical Computer Science 939 (2023) 237–249
Fig. 1. An example of the defense method.

Recently, the risk of being attacked is noticed when the identifiable property is not satisfied. Scapegoating attack (SA) [11]
refers to a kind of attack, that when an attacker manipulates a set of links to inject attacks (such as inject delay or discard
packets), not only the network performances will be degraded, but also the network tomography will be misled to guilt
a set of normal links as scapegoats of the attack. Chiu et al. [12] consider to degrade the performance of the network by
injecting delays to some path measurements and network tomography cannot localize the attackers. They introduce chosen-
victim, maximum-damage and obfuscation scapegoating attacks. Recent work [13] proposes the conditions to successfully
launch scapegoating attack. The presence of backdoor infected routers [14] and node-capture attacks [15] can be utilized to
carry out above scapegoating attacks by affecting the packet delivery and the path measurement.

The scapegoating attack can cause persistent and inconspicuous performance degradation. The ideal defense scheme is
to insure the probing paths of network tomography satisfying the “identifiability condition” [9], which requires the rank
of the routing matrix is equal to the number of links [7]. However, the number of links can be very large, the identifiability
condition is hard to be satisfied, unless the number of probing paths is not less than the number of links, which need very
high measurement costs. Efficient methods to defend against scapegoating attack without greatly increasing measurement
cost are highly desired. To address this problem, this paper proposes a highly efficient fault diagnosis based scheme for
defending against scapegoating attacks. It doesn’t require the probing paths to satisfy the identifiability condition. Instead,
when network tomography detects problematic links, we propose to use very low probing cost to examine whether the
problematic links are scapegoats or are real network problems.

Fig. 1 shows an intuitive example of our defense method. Fig. 1(a) shows a sample network with two problematic links
a and b detected by network tomography. At this time, we need fault diagnosis method to judge whether these two links
are actually problematic or they are scapegoats. Fig. 1(b) gives the path generated by our algorithm to verify whether the
link is really problematic or under scapegoating attack. The key behind the scheme is that we investigate the necessary and
sufficient condition to defense the scapegoating attack. When problematic links are discovered by network tomography, we
propose to add the minimum number of probing paths to break the conditions of scapegoating attack on the problematic
links, which is formulated as a minimum cost defending problem. The main contributions of this paper are as follows.

• Firstly, the necessary and sufficient condition to launch scapegoating attack is proposed. It is that the attacker manipu-
lates all links in a minimal cut set of the probing paths that pass through the scapegoat links but are not observed by
any probing path. Such link sets are called unobserved cut set (UCS).

• This paper proposes to find the UCS and add the minimum number probing paths to traverse them, so that the condition
of scapegoating attack is broken and the attacking links can be detected if any scapegoating attack exists.

• A minimum set cover model is proposed for selecting the least number of defense links to cover all the UCS; a greedy
approximation algorithm with H K ratio is proposed to solve the defense link selection problem; and a polynomial time
edge-disjoint path generation algorithm is proposed to generate defending paths to traverse these links-to-defend.

• Extensive verification on real network datasets shows the effectiveness of the proposed defense strategies.

2. Related work

2.1. Network tomography

Network tomography has been used for link measurement and fault location in wired [4] and wireless networks [5].
The early work focused on finding the most likely network state from the given measured path values [8][9], which is
called additive network tomography. [16] studies link delay distribution estimation from unicast edge measurements. [17]
studies to infer the internal topological structure based on end-to-end multicast and unicast observations; [18] introduces
the detection mode of dual broadcasting. [8] proposes the efficient algorithm MMP to place a minimum number of monitors
to identify all link metrics. [9] studies the algorithm STPC for constructing linearly independent measurement paths.
238

X. Xu, Y. Wang, Y. Zhang et al. Theoretical Computer Science 939 (2023) 237–249
The supervision of some network systems does not always need to accurately grasp the specific values such as delay
packet loss rate, sometimes only need to grasp the status of services or devices such as congestion location and fault loca-
tion [19][20], their measurement values are binary. In this case, modeling the problem with a system of Boolean equations
becomes more convenient because each unknown parameter will have only two states [21][22]. Therefore, Boolean network
tomography aims to infer the binary states of unknown parameters from end-to-end Boolean metrics [23][24]. Boolean
network tomography is a widely studied branch of network tomography. In this paper, we focus on additive network to-
mography [9].

2.2. Guaranteeing identifiable is difficult

Identifying all link metrics uniquely requires a routing matrix having rank equal to the number of links, which is however
difficult to satisfy for the number of links is large, and the dependence of topology problem [8]. Rank deficiency of routing
matrix will cause solution ambiguity. A branch is to investigate the placement of monitors and the design of the probing
paths to ensure the identification property.

Ref. [25] proves that if the network is directed (links have different metrics in different directions), link metrics cannot be
all identifiable unless every non-isolated node is a monitor. When the network is undirected, [26] derives the first necessary
and sufficient conditions for identifying all link metrics when probing paths may contain cycles. But in network tomography,
paths containing circles are generally avoided. Further, [27] characterizes the minimum number of measurement paths
needed to identify additive and non-additive link metrics. They allow the probing paths to contain repeated links.

Under the constraint that the probing paths must be cycle-free, [8] proves the identifiable conditions of link metrics.
The conditions show that the identifiability property depends on the network topology. In sparse networks, guaranteeing
identifiability needs to select a large number of monitors, which is generally not practical.

Seeing the difficulty, [6] considers partial identification problem using a limited number of monitors, which maximizes
the number of identifiable links by optimizing the placement of a limited number of monitors. [23] considers the optimal
monitor placement for localizing node failures. [28] considers the optimization problem of monitor placement when the
network may change topologies. On the other hand, given the set of monitors, the optimization of the measurement paths
is studied in [9,29].

2.3. Scapegoating problems and existing defense strategies

Methods like Pseudo-inverse, WCF estimator [3] and congested link identification algorithm [30] are generally used to
recover the link states when identification is not guaranteed. When the identifiable property is not satisfied, the risk of
scapegoating attack is noticed. [11] introduces the scapegoating problems. They introduce chosen-victim, maximum-damage
and obfuscation scapegoating attacks. [12] considers to degrade the performance of the network by injecting delays to some
path measurements and network tomography cannot localize the attackers.

Existing defense strategies are usually deployed on the host system to directly detect anomalies of specific victims. For
example, packet marking and filtering mechanisms can mark legitimate packets so that the victimized edge router can filter
the attack stream [31]. There is an IP backdating mechanism that can trace back to the real source of the forged IP packet
[32]. Traffic monitoring is used to detect the forwarding of abnormal packets [33], and new strategies are designed to detect
routers that discard or misroute packets [34]. Currently, the study of conditions and strategies to defense scapegoating attack
remains open.

3. Problem formulation

3.1. Network tomography model

We consider a network modeled as a weighted, undirected graph G = (V , L, X). V and L are the sets of nodes and links,
|V | = n and |L| = m. Set X represents the link weights, where xi ∈ X is an unknown link metric that describes the link i’s
performance, such as latency and loss rate. We assume the measures of these link metrics are additive. This is a canonical
model for representing important performance measures [8,9,23]. In the network, a subset of vertices used for injecting
and extracting probing packets is defined as the set of monitors M = {mi}. Monitor placement algorithms and probing path
generation algorithms in network tomography can be referred to [9][8].

A probing path pi for network tomography is defined as a sequence of links that starts from a source monitor si and
ends at a destination monitor di . The end-to-end measurement of this probing path is denoted by yi . P = {pi} is the set of
probing paths and Y = {yi} denotes the end-to-end measurements of these paths. Routing matrix R = {ri, j}pi∈P ,l j∈L models
how the probing paths traverse the links in L. ri, j = 1 if a link l j ∈ L is on the path pi ∈ P and ri, j = 0 otherwise. Network
tomography is to solve the equation Rx̂ = Y to find a solution x̂ that represents the estimated link metrics [8].

Note that this linear equation has a unique solution when the routing matrix R has full column rank, i.e., Rank(R) = m,
which is the unique identification condition [7]. However, since m � n, it is generally difficult to generate enough probing
paths to satisfy the identification condition. For such difficulty, network managers generally adopt the routing matrix with
Rank(R) < m. In such case, Pseudo-inverse is generally used [11][12] to estimate x̂ by:
239

X. Xu, Y. Wang, Y. Zhang et al. Theoretical Computer Science 939 (2023) 237–249
Fig. 2. A network with five monitors selected by MMP [35] algorithm and ten probing paths. (For interpretation of the colors in the figure(s), the reader is
referred to the web version of this article.)

x̂ = (RT R)−1 RT Y (1)

Without loss of generality, we consider the link metric is additive, such as link delay. Then network tomography determines
states of links by following method:

Definition 1 (Estimated link states). Given estimated link delay x̂, a link may be divided into three states:

ψ(li) =
⎧⎨
⎩

normal if x̂i < βmin
uncertain if βmin � x̂i � βmax

problematic if x̂i > βmax

(2)

where βmin is a threshold to find normal links. βmax is a threshold to detect problematic, i.e., problematic links. When
problematic links are detected, network tomography generally requires more diagnosis method to check and to fix the
detailed problem.

3.2. Scapegoating attack model

Consider the attacker hacks a set of links, say Lm ⊂ L is manipulated by the attackers. Attacker injects delays onto
these links to affect the probing paths that pass through these links. The attackers also hope to hide their attacks by let
network tomography to wrongly detect some other links as problematic. The wrongly detected problematic links are called
“scapegoats”. The measurement model under attack is:

R(x + �x) = Y ′ (3)

where �xi > 0 for li ∈ Lm and �xi = 0 for li /∈ Lm .
Refs. [11][12][13] show that scapegoating attack can be successfully launched when the probing paths don’t satisfy

identifiability condition. Let Ls ⊂ L be the set of scapegoats. There should be Ls ∩ Lm = ∅, since attacking links should not
be discovered. The scapegoating attack is called successful launched if:{

x̂i ≤ βmin for li ∈ Lm

x̂i > βmax for some li ∈ Ls
(4)

where x̂ = {x̂1, ̂x2, · · · x̂n} is the solution of x̂ = (RT R)−1 RT Y ′ , which is the network tomography results under attack.
In Fig. 2, we using a simple network with five monitors to illustrate the scapegoating attack. The red markers are the

monitors which are selected by MMP algorithm [8]. In order to identify the link metrics, ten probing paths are constructed
among monitors, as listed in the right part of Fig. 2.

Fig. 3 shows the result of scapegoating attack. The manipulated links are l3, l5 and l11 and the scapegoating link is l12. The
attack misleads the network tomography to conclude that link l12 is a problematic link and the administrator cannot identify
the attacking links by simply checking the “problematic link” l12. This not only greatly degrades the network performance,
but also imposes high difficulty to detect the true faults.
240

X. Xu, Y. Wang, Y. Zhang et al. Theoretical Computer Science 939 (2023) 237–249
Fig. 3. The result of the scapegoating attack.

4. Defense strategy

It is necessary to design defense strategy to avoid scapegoating attack. We firstly investigate the conditions for successful
defense, and then propose an efficient, minimum cost fault diagnosis method to examine whether a detected “problematic
link” is a scapegoat, so as to discover the attacking links.

4.1. What to defend?

Note that the probing paths can be classified into three categories.

Definition 2 (Three types of paths). The probing paths in P are classified as.

• Pm ⊆ P is the manipulated path set. Each path in it passes through at least one manipulated links.
• Pn ⊆ P denotes the normal path set. All paths in it doesn’t pass through any manipulated link.
• P s ⊆ P is the scapegoating path set, which contains measurement paths that pass through at least one scapegoat link.

The original delay of an attacked link is xi and the injected delay is �xi . The increased delay for a path pi ∈ Pm is further
denoted by �ti , where �ti = ∑

l j∈pi

�x j . Since the injected delays only affect the manipulated path set, we can easily get the

following Lemma 1.

Lemma 1. Given P , Ls, Lm, if delays are injected onto links in Lm, there must be �ti � 0 for pi ∈ Pm and �ti = 0 for pi ∈ Pn.

Proof. For each pi ∈ P , if �ti � 0, there is at least one link l j ∈ pi , l j ∈ Lm . The path pi passes through at least one
manipulated links, therefore, pi ∈ Pm . For each pi ∈ P , if �ti = 0, there is no link in pi belong to Lm . The path pi doesn’t
pass through any manipulated link, therefore, pi ∈ Pn . �

Then we separate the roles of link sets according to their properties on the probing paths.

Definition 3 (Cut set of paths). A cut set C of a path set P is a set of links in P that for every path pi ∈ P , the path passes
through at least one link in C . In other words, when we cut all the links in C , all the paths in P will be cut.

Definition 4 (Unobserved cut set (UCS) of ls). An unobserved cut set of ls is a set of links that cut the paths that pass through
ls and there is no other probing path that passes through any link in this set.

Problem 1 (Diagnosis-based scapegoating defense). The following problem is specially considered. When network tomography
detects a link set Ls is problematic, how to use the minimum additional probing costs to check out whether their states are
truly problematic, or they are scapegoats of some attackers.

Suppose a set of scapegoat links Ls are reported problematic, i.e., x̂i > βmax , for li ∈ Ls , where x̂ = (
RT R

)−1
RT Y is the

detected link states by current routing matrix R , constructed using probing paths P . But the true states of these links are
241

X. Xu, Y. Wang, Y. Zhang et al. Theoretical Computer Science 939 (2023) 237–249
normal. Our goal is to add the minimal number of defending paths Pd to construct a new routing matrix R ′ = [R, Rd]T ,
where Rd is the routing matrix of Pd to recover the true states of links in Ls . By adding Pd , the recovered link states are
x̂′ = (

R ′ T R ′)−1
R ′ T Y ′ . Pd is called an effective defense, if the true states of the scapegoat links are recovered. The minimal

path defending problem can be stated as follows:

Problem 2 (Minimal path defending problem). The minimal path defending problem for scapegoating attack is to find the
minimal number of additional probing paths such that:

min |Pd|

s.t.

⎧⎪⎪⎨
⎪⎪⎩

R ′ = [R, Rd]T , Y ′ = [Y , Yd]T

x̂′ =
(

R ′T R ′)−1
R ′T Y ′

x̂′
i ≤ βmax,∀li ∈ Ls

(5)

Note that in (5), the original routing matrix R is copied, so the path constraints in original Pn and Pm are still satisfied.
The key problem is how to design the defending paths.

4.2. Key observations

For defense, although the exact locations of Lm are not known, we know that they must cover an unobserved cut set of
P s [12][13]. For a link li in Ls , there maybe multiple unobserved cut sets that can cut the probing paths passing through li .
We denote the unobserved cut sets for li ∈ Ls as {Ci,1, Ci,2, · · · , Ci,ni }.

Lemma 2 (Breaking an unobserved cut set for li ∈ Ls). If we add a probing path p to go through any link in a cut set Ci, j but not the
link li , then the injected delays on the cut set Ci, j can no longer be attributed to li .

Proof. Only when all the links in an unobserved cut set of li are manipulated by the attacker, can the scapegoating attack
to li be successfully launched. Therefore, if a link in the unobserved cut set Ci, j , denoted by lk has been monitored by an
added p, the added delay to this link will increase the delay of the new path p. Since p doesn’t go through li , the increased
delay cannot be attributed to li . We say the unobserved cut set Ci, j is broken by the added path p. �
Theorem 1 (Necessary & sufficient condition to defend Ls). Given G, P , and Ls, to discover whether each link li ∈ Ls is truly problematic
or not, we need to add new probing paths Pd which don’t go through li ∈ Ls, but make each unobserved cut set of li have at least one
link be passed by at least one path in Pd.

Proof. Necessity: From Lemma 2, a unobserved cut set of li is broken if one of its link is passed through by an added path.
Since every cut set may initial an attack to li , we need to break all cut sets of li to protect li . So li is protected only if all its
unobserved cut sets are broken.

Sufficiency: When all the unobserved cut sets are broken, the injected delays on any cut set cannot be attributed to li .
So the true state of li will be recovered after adding the defending paths. �
4.3. Defense methodologies

For each link li ∈ Ls , there maybe many unobserved cut sets that can cut the paths going through li . Let Pli ∈ P s denote
the set of paths that go through li . Let K denote the number of paths in Pli . Since any unobserved cut set of Pli must cover
an unobserved minimal cut set (UMCS) of Pli , so in order to break all unobserved cut sets for Pli , we must break all the UMCS
of Pli .

There maybe a large amount of link combinations can generate UMCS of Pli . An example is shown in Fig. 4, in which
li = (15, 18). Pli = {P1, P2, P3}. Let C be the set of UMCS. Then selecting one link on each path will form an unobserved
minimal link cut, so |C| = 6 × 6 × 7 = 252. From Fig. 4(a), we can also see that by selecting P4 as a defending path, it will
break all the UMCS in C. So adding P4 as a defending path will reveal li ’s true state.

To overcome the large number of UMCS, we propose a probing path segmentation method to merge the links and to
reduce the size of C. Suppose the K paths of Pli are intersecting at some vertices. The intersecting vertices cut each path
into several path segments. The segments of the jth path are named by S j = {s j,1, s j,2, · · · , s j,n j }, where n j is the number
of segments on path j. Each segment contains several sequentially connected links on a common path. If a defending path
passes through a segment, it passes through all links in the segment.

Algorithm 1 gives the algorithm of path segmentation. The matrix of addition and subtraction between two paths reveals
whether an edge is passed by both paths simultaneously. For path pi , p j and link lk , the addition matrix addi, j,k = 2 if link
lk is on both path pi and path p j ; addi, j,k = 1 if link lk is on either path pi or path p j ; addi, j,k = 0 if link lk is on neither
242

X. Xu, Y. Wang, Y. Zhang et al. Theoretical Computer Science 939 (2023) 237–249
Fig. 4. Segments of Pli and the design of defending path.

Algorithm 1: Path segmentation algorithm: S = PathSeg(R, P).
Input: R, P
Output: S

1 Initialize S = ∅ ;
2 for (i = 1; i ≤ |P | − 1; i + +) do
3 for (j = i + 1; j ≤ |P |; j + +) do
4 for (k = 1; k ≤ size(R, 2); k + +) do
5 add{i, j}(1, k) = R(i, k) + R(j, k);
6 sub{i, j}(1, k) = R(i, k) − R(j, k);

7 for (i = 1; i ≤ |P | − 1; i + +) do
8 for (j = i + 1; j ≤ |P |; j + +) do
9 for (k = 1; k ≤ |pi | − 1; k + +) do

10 if add{i, j}(1, pi(k)) �= add{i, j}(1, pi(k + 1)) then
11 PathSlice{i}(k) = 1;

12 if sub{i, j}(1, pi(k)) �= sub{i, j}(1, pi(k + 1)) then
13 PathSlice{i}(k) = 1;

14 for each path pi ∈ P do
15 count the number of path slice psi in pi ;
16 for (j = 1; j ≤ psi + 1; j + +) do
17 derive the segment si j of path pi from R and P ;

18 return S ;

path pi nor path p j . Similarly, the subtraction matrix subi, j,k = 1 if link lk is only on path pi ; subi, j,k = 0 if link lk is on
both path pi and path p j , or on neither path pi nor path p j ; subi, j,k = −1 if link lk is only on path p j . For link la and lb , if
link la and lb are on the same path set, the addition matrix and the subtraction matrix will be the same, adda = addb and
suba = subb . If two adjacent edges on a path are not passed by the same paths, a slice is added between them. We count
the number of slices on each path and the number of segments on each path is the number of slices plus one. Finally, we
derive segment set S by using slice matrix and path matrix.
243

X. Xu, Y. Wang, Y. Zhang et al. Theoretical Computer Science 939 (2023) 237–249
Fig. 4(b) shows an example of path segmentation. The three paths passing through ls are divided into path segments by
the intersecting vertices, i.e., S1 = {s11, s12, s13, s14}, S2 = {s21, s22, s23, s24}, S3 = {s31, s32, s33}. The cut set formed by path
segments is denoted by Cs .

Definition 5 (Segment cut). By selecting one path segment from each path in the path set Pli , a segment cut to the path set
Pli is formed.

The number of path segments on a path is much less than the number of links. The number of segment cuts of Pli is at
most n1 × n2 × · · · × nK , which is much less than the number of UMCS, i.e., |Cs| |C|.

Lemma 3. Every minimal link cut set of Pli must be covered by a segment cut.

Proof. Since every unobserved minimal link cut set must contain links cutting every path of Pli , each link must also be in
a path segment. The path segments where these links are located form a segment cut to Pli . So every minimal link cut set
has a mapped segment cut. Therefore, every minimal link cut set must be covered by a segment cut. �
Lemma 4 (Defense policy). To break all the UMCS for Pli , i.e., to have any UMCS traversed by a defending path, we only need to insure
every segment cut having a path segment to be traversed by a defending path.

Proof. From Lemma 3, every unobserved minimal link cut set of Pli is covered by a segment cut. So if we insure every
segment cut having a path segment to be traversed by a defending path, then every minimal link cut set has at least one
link be traversed by a defending path. The necessary condition for li being a scapegoat is violated. So that by adding the
defending path, li cannot be a scapegoat and its true state will be recovered. �
4.4. Minimum cost defense for single scapegoat link

We will show that when there is only one scapegoat link, only one defending path is needed.

Proposition 1 (The optimal defense policy for one scapegoating link). To recover the true state of a link li ∈ Ls, we only need to add one
probing path Pd to go through all path segments of one specific path in Pli except the link li . Then the true state of li can be recovered
by (5).

Proof. When a defending path passes through the segments of a specific path in Pli , all the minimal link cut sets of Pli are
broken. So the manipulated links can no longer attribute the injected delays to li and li ’s true state will be recovered by the
new routing matrix. �

Fig. 4 shows the example. To recover the true state of li , only one defending path Pd = P4 is needed, which goes through
s31, s32, s33 (for this path has the least number of segments), but not to go through li .

4.5. Minimum cost defense for multiple links

Suppose there are L links in Ls . An intuitive way is to consider each problematic link individually, which needs to add L
defending paths. We further show that the problematic links can also be considered jointly.

Consider there are totally K paths in the path set P s . Similar to Fig. 4, each path is divided into several path segments
by the common vertices of these paths. Let’s denote the path segments as S1 = {s1,1, · · · , s1,n1}, · · · , S K = {sK ,1, · · · , sK ,nK }.
In order to defend all the links in Ls , all the segment cuts of P s need to be broken. By selecting one path segment from
each path, a segment cut to the path set P s can be formed. Using this method, all minimal segment cuts for P s can be
found, which is denoted by Cs .

Given the segment cut set Cs , to design the minimum number of defending paths, we propose to find a segment set S
with the minimum cardinality, such that every segment cut Ci ∈Cs contains at least one segment in S. Then S is called a
minimum cover of Cs .

This problem is a typical set cover problem, which is NP-hard. A greedy algorithm is proposed to address this minimum
cut set cover (MCSC) problem. Let S be the set of all path segments in Cs . Let U be all uncovered segment cuts in Cs .

In the algorithm, if a path segment s ∈ S appears in ns segment cuts in U , ns reveals the covering utility of the path
segment s. In each iteration, the segment with the largest covering utility is selected and is put in S, until all segment cuts
in Cs have been covered. gMCSC has an H K approximation ratio [36], where K is the largest number of cut sets that share
one common path segment in S .
244

X. Xu, Y. Wang, Y. Zhang et al. Theoretical Computer Science 939 (2023) 237–249
Algorithm 2: Greedy minimum set cover: S=gMCSC(Cs).
Input: Cs

Output: S
1 Initialize U =Cs , S = ∅, S= all path segments in Cs ;
2 while (U is not empty) do
3 select s in S that covers the most number of sets in U ;
4 add s to S ;
5 remove the segment cuts covered by s from U remove s from S ;

6 return S ;

Lemma 5 (Approximation ratio of gMCSC). Let Ks be the number of segment cuts in Cs that have common path segment s. Let

K = maxs∈S Ks be the largest number of segment cuts that share a common path segment. Let H K =
K∑

i=1
1/i ≈ ln K , then the gMCSC

algorithm returns S which has at most H K times segments than the optimal number of segments to make each segment cut in Cs has
at least one segment in S.

4.6. Minimum number defending path generation

From Lemma 4, since S covers all segment cuts Cs , in order to break all the segment cuts in Cs , defending paths only
need to be added to go through all the path segments in S and don’t go through any link in Ls . We want to add the
minimum number of defending paths to achieve this goal.

In network tomography, a probing path is not required to be a simple path, which can traverse the same edge more than
one time. So a polynomial time algorithm is proposed to generate the minimum number of defending paths to go through
all the path segments in S but no links in Ls .

Algorithm 3: Defending path generation algorithm: Pd = PathGen(G, M, Ls, S).
Input: G, M, Ls, S
Output: Pd

1 G = G \ Ls and suppose it has F components ;
2 for (l = 1; l ≤ F ; l + +) do
3 select a pair of monitors m j, mk S �= ∅ and suppose it has E components;
4 Find the shortest path P∗

1 between (m j, S1);
5 for (i = 1; i ≤ E − 1; i + +) do
6 Find the shortest path P∗

i+1 between (Si , Si+1)

7 Find the shortest path P∗
E+1 between (S E , mk) ;

8 P∗ = P∗
1 ∪ P∗

2 ∪ · · · ∪ P∗
E+1 ;

9 if (P∗ is shorter than Pl
d) or (P l

d is empty) then
10 Pl

d = P∗ ;

11 return Pd ;

The idea of the algorithm is to firstly removes the edges Ls from the graph G . Suppose the removal of Ls decomposes G
into F components, denoted by G1, G2, · · · , G F . We show that we need to add at most F probing paths to prevent Ls from
scapegoating attack.

In detail, in subgraph Gl , we select a pair of monitors and find the shortest paths P∗
1 between the first monitor and

one of the segments S1 in S, P∗
E+1 between the second monitor and another one of the segments S E in S, and also

find the shortest paths P∗
2, · · · , P∗

E between (S1, S2), · · · , (S E−1, S E) by using Dijkstra algorithm. The whole path Pl
d =

{P∗
1, P∗

2, · · · , P∗
E , P∗

E+1} is the defending path of the subgraph Gl . Since Ls has been deleted, this path will not traverse
any link in Ls . The defending paths of the F components cover all segments in S. So at most F defending paths in the
F components need to be generated to cover S and don’t traverse any link in L S . The detailed algorithm is given in
Algorithm 3. Line 3 to line 8 generate the shortest defending path between two monitors. Line 9 to line 10 select the
overall shortest defending path.

The obtained paths pass through all path segments in S but no link in Ls , so they satisfy the requirement to recover the
true states of Ls . So at most F defending paths are generated to traverse all segments in S but no links in Ls .

The most time consuming step in Algorithm 3 is the Dijkstra algorithm, whose complexity is O (E ∗ n2
l) where nl is the

number of nodes in Gl . Since nl < n, so the complexity of Algorithm 3 is O
(

F ∗ E ∗ n2
)

in the worst case, where n is the
number of nodes in G .

An example of defending path generation for Ls = {l1, l2} is shown in Fig. 5. Fig. 5(a) shows P s and Ls , in which
P s is shown by path segments; Fig. 5(b) shows the result of Algorithm 2, i.e., S, which contains four path segments
{s11, s12, s22, s23}; Fig. 5(c) shows the construction of a defending path by selecting the two monitors, in which blue links
245

Fig. 5. An example of generating the minimum number of defending paths when Ls contains multiple links.

Table 1
Parameters of topologies.

Network L(G) V(G) Monitors Paths

AttMpls 56 25 5 100
Surfnet 68 50 32 845
TataNld 186 145 89 6217
ER 1215 500 61 3606

show the shortest paths between segment ends, or the shortest path between a monitor and a segment end. Fig. 5(d)
showed the constructed shortest defending path Pd , which is composed by {s11, s12, s12, sd1, s23, sd2}.

5. Performance evaluation

5.1. Experiment setup

We use real network topologies from the Internet Topology Zoo [37] and synthetic ER network topology, whose parame-
ters are shown in the Table 1. Topology Zoo are real ISP network topologies which are widely used in network tomography.
For each topology, the MMP [8] algorithm is used to select candidate monitors. After selecting the monitors, the probing
paths are generated by multiple shortest paths based on Dijkstra’s algorithm and Yen’s algorithm [29].

In practice, the difficulty of protecting all links in Ls has relationship with the number of cut sets. Because different
selected links in Ls can result in different defense performance, we protect each link separately and calculate average
number of cut sets and mean value of defense cost as benchmarks.

5.2. Results of defense strategy

Fig. 6 shows the average ratio of identifiable links with the increase of paths in different topologies. The evaluations on
both synthetic topology and real network topologies show that when the number of paths is small, the increase of paths
has a great influence on the number of identifiable links. But when the number of paths is large to a certain extent, blindly
looking for new paths cannot increase the number of identifiable links. The application of our defending path generation
algorithm can effectively solve this problem.

We use |S|/|L(G)| to represent the reduction of the size of a graph. |S| is the number of segment in the graph and
|L(G)| is the number of links in the graph. The smaller the ratio of |S|/|L(G)|, the more significant the size of the graph
shrinks. Fig. 7 shows the reduction of the size of the given graphs, achieved by the probing path segmentation method we
proposed. Though in the sparse network, the MMP [35] algorithm selects more nodes as candidate monitors, Algorithm 1
still can merge the links and reduce the size of C efficiently.

Fig. 8 shows an example of how to generate the defending paths in the AttMpls network. The first sub-figure is the
network tomography of AttMpls network. The scapegoat link is link 54. There are 10 probing paths, i.e., P in the network,
X. Xu, Y. Wang, Y. Zhang et al. Theoretical Computer Science 939 (2023) 237–249
246

X. Xu, Y. Wang, Y. Zhang et al. Theoretical Computer Science 939 (2023) 237–249

Fig. 6. Average ratio of identifiable links with the increase of paths in different topologies.

Fig. 7. The reduction of the size of graphs achieved by Algorithm 1.

Fig. 8. An example of defending path generation.
247

X. Xu, Y. Wang, Y. Zhang et al. Theoretical Computer Science 939 (2023) 237–249
Fig. 9. Path length of shortest defense path and random defense path.

which are shown in different colors. Some paths are overlapped so only the top color can be seen. The intersecting vertices
of these paths cut each path into several path segments.

To defense, we only consider the paths passing through Ls , i.e., P s . We need to insure the minimum segment cut of the
segments in P s being traversed by a defending path.

Firstly, we remove the edges Ls from the graph G . According to the defense methodologies, the intersecting vertices cut
each path into several path segments. We only need to insure every segment cut having a path segment to be traversed by
a defending path. We suppose the possible scapegoat, i.e., Ls is the link 54, which is included in the segment 18.

Based on Algorithm 2, the minimum set cover of the cut set is segment 11, which includes links {20,25,29}. Fig. 8(e)
is the new segment graph of the network tomography and Fig. 8(b) is the S of the given topology, each segment cut in
Cs has at least one segment in S. According to Algorithm 2, the green highlighted links in this figure are the segments S
of the given network tomography. Based on Algorithm 3, the black highlighted links in Fig. 8(c) are the shortest paths P∗
between monitors and segments. By using Algorithm 3, we can generate the minimum defending path in Fig. 8(d) to verify
whether link 54 is a scapegoat.

We compare two methods of generating defending paths. The first method is randomly choosing a pair of monitors in
a subgraph Gl as the source and terminal of the defending path. And the other method is comparing the length of the
generated path of all pairs of monitors and find the shortest defending path in the subgraph Gl . The second method is more
complex than the first one, but the average length of the defending path of the second method is shorter than that of the
first method. Fig. 9 is the comparison of two methods, the horizontal x-axis shows the number of experiments in a same
subgraph; the vertical y-axis shows the average path length of two methods. As is shown in Fig. 9, when using Algorithm 3,
the average path length of finding the shortest defending path is significantly shorter than randomly choose monitors to
construct defending path.

6. Conclusion

This paper proposes a diagnosis-based defending scheme for scapegoating attack, so that the scapegoating attack can be
efficiently detected without the high cost of making all the links in the network be identifiable. We propose a probing path
segmentation method to merge the links and reduce the problem of finding link cuts to the problem of finding segment
cuts. A minimum set cover model is proposed to select the least number of defense links to cover the unobserved cut set,
and we propose a polynomial time algorithm to generate the least number of probing paths to go through the selected
defense links.

Theoretical analysis and simulations in the real network topologies show the effectiveness of the proposed defense
strategies. In future work, how to optimize the defense strategy proposed in this paper to diagnose and defend against
other types of scapegoating attacks to guarantee the security of network tomography should be further studied.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential com-
peting interests: Yongcai Wang reports financial support was provided by National Natural Science Foundation of China,
12071478, 61972404.

References

[1] X. Xu, Y. Wang, Y. Zhang, D. Li, Defense of scapegoating attack in network tomography, in: The 16th International Conference on Algorithmic Aspects
in Information and Management, 2022.
248

http://refhub.elsevier.com/S0304-3975(22)00639-9/bib48044979623AB599D9557300637AA49Bs1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib48044979623AB599D9557300637AA49Bs1

X. Xu, Y. Wang, Y. Zhang et al. Theoretical Computer Science 939 (2023) 237–249
[2] N. Duffield, F.L. Presti, V. Paxson, D. Towsley, Network loss tomography using striped unicast probes, IEEE/ACM Trans. Netw. 14 (2006) 697–710.
[3] A. Chen, J. Cao, T. Bu, Network Tomography: Identifiability and Fourier Domain Estimation, 2007.
[4] T. Bu, N. Duffield, F.L. Presti, D. Towsley, Network tomography on general topologies, in: ACM SIGMETRICS International Conference on Measurement &

Modeling of Computer Systems, 2002, p. 21.
[5] Y. Zhao, R. Govindan, D. Estrin, Sensor network tomography: monitoring wireless sensor networks, in: 2001 ACM SIGCOMM Computer Communication

Review, vol. 32, 2001.
[6] L. Ma, T. He, K.K. Leung, A. Swami, D. Towsley, Monitor placement for maximal identifiability in network tomography, in: IEEE INFOCOM 2014 - IEEE

Conference on Computer Communications, ISSN 0743-166X, 2014, pp. 1447–1455.
[7] S. Tati, S. Silvestri, T. He, T.L. Porta, Robust network tomography in the presence of failures, in: 2014 IEEE 34th International Conference on Distributed

Computing Systems, ISSN 1063-6927, 2014, pp. 481–492.
[8] L. Ma, T. He, K. Leung, A. Swami, D. Towsley, Identifiability of link metrics based on end-to-end path measurements, in: 2013 Conference on Internet

Measurement Conference, 2013, pp. 391–404.
[9] L. Ma, T. He, K.K. Leung, D. Towsley, A. Swami, Efficient identification of additive link metrics via network tomography, in: Proceedings - 2013 IEEE

33rd International Conference on Distributed Computing Systems, ICDCS 2013, 2013, pp. 581–590.
[10] Y. Qiao, J. Jiao, Y. Rao, H. Ma, Adaptive path selection for link loss inference in network tomography applications, PLoS ONE 11 (2016) e0163706.
[11] S. Zhao, Z. Lu, C. Wang, When seeing isn’t believing: on feasibility and detectability of scapegoating in network tomography, in: 2017 IEEE 37th

International Conference on Distributed Computing Systems (ICDCS), ISSN 1063-6927, 2017, pp. 172–182.
[12] C.-C. Chiu, T. He, Stealthy DGoS attack: DeGrading of service under the watch of network tomography, in: IEEE INFOCOM 2020 - IEEE Conference on

Computer Communications, IEEE Press, Toronto, ON, Canada, 2020, pp. 367–376.
[13] X. Xu, Y. Wang, L. Xu, D. Li, Locate vulnerable link set to launch minimum cost scapegoating attack in network tomography, under review (2022).
[14] L. Constantin, Attackers slip rogue, backdoored firmware onto Cisco routers | PCWorld, https://www.pcworld .com /article /2984084 /attackers -install -

highly-persistent -malware -implants -on -cisco -routers .html, 2021.
[15] P. Tague, R. Poovendran, Modeling node capture attacks in wireless sensor networks, in: 2008 46th Annual Allerton Conference on Communication,

Control, and Computing, 2008, pp. 1221–1224.
[16] Meng-Fu Shih, A. Hero, Unicast inference of network link delay distributions from edge measurements, in: 2001 IEEE International Conference on

Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221), vol. 6, ISSN 1520-6149, 2001, pp. 3421–3424.
[17] A. Adams, Tian Bu, T. Friedman, J. Horowitz, D. Towsley, R. Caceres, N. Duffield, F.L. Presti, S.B. Moon, V. Paxson, The use of end-to-end multicast

measurements for characterizing internal network behavior, IEEE Commun. Mag. 38 (2000) 152–159.
[18] B. Xi, G. Michailidis, V.N. Nair, Estimating network loss rates using active tomography, J. Am. Stat. Assoc. 101 (2006) 1430–1438.
[19] L. Ma, T. He, A. Swami, D. Towsley, K.K. Leung, J. Lowe, Node failure localization via network tomography, in: Proceedings of the 2014 Conference on

Internet Measurement Conference, IMC ’14, Association for Computing Machinery, New York, NY, USA, 2014, pp. 195–208.
[20] L. Ma, T. He, A. Swami, D. Towsley, K.K. Leung, Network capability in localizing node failures via end-to-end path measurements, IEEE/ACM Trans.

Netw. 25 (2017) 434–450.
[21] N. Bartolini, T. He, V. Arrigoni, A. Massini, F. Trombetti, H. Khamfroush, On fundamental bounds on failure identifiability by Boolean network tomogra-

phy, IEEE/ACM Trans. Netw. 28 (2020) 588–601.
[22] N. Galesi, F. Ranjbar, Tight bounds for maximal identifiability of failure nodes in Boolean network tomography, in: 2018 IEEE 38th International

Conference on Distributed Computing Systems (ICDCS), 2018, pp. 212–222.
[23] Liang Ma, Ting He, Ananthram Swami, Don Towsley, Kin K. Leung, On optimal monitor placement for localizing node failures via network tomography,

in: Performance Evaluation, Elsevier Science Publishers B. V. PUB568 Amsterdam, The Netherlands, 2015.
[24] H. Nguyen, P. Thiran, Active measurement for multiple link failures diagnosis in IP networks, vol. 3015, 2004, pp. 185–194.
[25] Y. Xia, D. Tse, Inference of link delay in communication networks, IEEE J. Sel. Areas Commun. 24 (2006) 2235–2248.
[26] A. Gopalan, S. Ramasubramanian, On identifying additive link metrics using linearly independent cycles and paths, IEEE/ACM Trans. Netw. 20 (2012)

906–916.
[27] N. Alon, Y. Emek, M. Feldman, M. Tennenholtz, Economical graph discovery, Oper. Res. 62 (2014) 1236–1246.
[28] T. He, L. Ma, A. Gkelias, K.K. Leung, A. Swami, D. Towsley, Robust monitor placement for network tomography in dynamic networks, in: IEEE INFOCOM

2016 - The 35th Annual IEEE International Conference on Computer Communications, 2016, pp. 1–9.
[29] T. Pepe, M. Puleri, Network tomography: a novel algorithm for probing path selection, in: 2015 IEEE International Conference on Communications (ICC),

2015.
[30] H.X. Nguyen, P. Thiran, The Boolean solution to the congested IP link location problem: theory and practice, in: IEEE INFOCOM 2007 - 26th IEEE

International Conference on Computer Communications, ISSN 0743-166X, 2007, pp. 2117–2125.
[31] A. Yaar, A. Perrig, D. Song, Pi: A Path Identification Mechanism to Defend Against DDoS Attacks, Carnegie Mellon University, 2003.
[32] G. Yao, J. Bi, A.V. Vasilakos, Passive IP traceback: disclosing the locations of IP spoofers from path backscatter, IEEE Trans. Inf. Forensics Secur. 10 (2015)

471–484.
[33] A.T. Mizrak, S. Savage, K. Marzullo, Detecting compromised routers via packet forwarding behavior, IEEE Netw. 22 (2008) 34–39.
[34] J.R. Hughes, T. Aura, M. Bishop, Using Conservation of Flow as a Security Mechanism in Network Protocols, ISSN 1540-7993, IEEE Computer Society,

2000, 0132.
[35] L. Ma, T. He, K.K. Leung, A. Swami, D. Towsley, Inferring link metrics from end-to-end path measurements: identifiability and monitor placement,

IEEE/ACM Trans. Netw. 22 (2014) 1351–1368.
[36] V.V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin, Heidelberg, 2001.
[37] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, M. Roughan, The Internet topology zoo, IEEE J. Sel. Areas Commun. 29 (2011) 1765–1775.
249

http://refhub.elsevier.com/S0304-3975(22)00639-9/bibC172A8CE69EEDE4A9D5041FBE039BFD8s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib20E9E854760D152615078596780B9A61s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib528953727EF3A4E1C441C6078534C39Bs1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib528953727EF3A4E1C441C6078534C39Bs1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibD8708ECB9A1E7BA172C83D8360C57E7Ds1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibD8708ECB9A1E7BA172C83D8360C57E7Ds1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib37CC8552B35560A7B91CD1F47DF89CAEs1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib37CC8552B35560A7B91CD1F47DF89CAEs1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibD3BDA6FF7EABD4E861E899B20C308564s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibD3BDA6FF7EABD4E861E899B20C308564s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib999FE455196BF8D34E2D743FC4B22B85s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib999FE455196BF8D34E2D743FC4B22B85s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib3E7C1C394A8557A57012A9BE9BF7B5EFs1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib3E7C1C394A8557A57012A9BE9BF7B5EFs1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib5918D31259F1B9FF189AD08424B946CDs1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibE58C8B0CBFCBE2A2C18FBB41763BFD42s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibE58C8B0CBFCBE2A2C18FBB41763BFD42s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib212FF702AD6DBC299CFD0A3273661D56s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib212FF702AD6DBC299CFD0A3273661D56s1
https://www.pcworld.com/article/2984084/attackers-install-highly-persistent-malware-implants-on-cisco-routers.html
https://www.pcworld.com/article/2984084/attackers-install-highly-persistent-malware-implants-on-cisco-routers.html
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib14451DAA5C7F813573B8A72A0E1CFD95s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib14451DAA5C7F813573B8A72A0E1CFD95s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib2AFD410E2E5B23DAD6F18513B2F72D0Ds1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib2AFD410E2E5B23DAD6F18513B2F72D0Ds1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib9882D05CB24F7FD0D1CD0DCD1B86A8A1s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib9882D05CB24F7FD0D1CD0DCD1B86A8A1s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibB304337A7930C3A7050319DD77317DBDs1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibF9C9CB50E8F1909E70F7F6F5A9D2E9D5s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibF9C9CB50E8F1909E70F7F6F5A9D2E9D5s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibB5C8D0CE694CAD402769F01120BC7D0Cs1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibB5C8D0CE694CAD402769F01120BC7D0Cs1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibFE1B5C967F208619A91864BD7A9C9BD7s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibFE1B5C967F208619A91864BD7A9C9BD7s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibE70866C5CEFFF90781FC1A90804AD49As1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibE70866C5CEFFF90781FC1A90804AD49As1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibAA86045B793FD7FE8BAA40E6A6A2DBB6s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibAA86045B793FD7FE8BAA40E6A6A2DBB6s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibF1A333688622B5BC6DA3E9C4D2EF76E5s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib3DFE563103AB11BEC75BB5081E7A1DBEs1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib7A6F150B83091CE20C89368641F9A137s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib7A6F150B83091CE20C89368641F9A137s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibFBFBA2E45C2045DC5CAB22A5AFE83D9Ds1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib75D99404A02E2BC993A6BAC34C60D679s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib75D99404A02E2BC993A6BAC34C60D679s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib97AB62D3FFD876FC9AE166589B9CDE1Bs1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib97AB62D3FFD876FC9AE166589B9CDE1Bs1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibA846EBA5B36345D496BF7693A549EF10s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibA846EBA5B36345D496BF7693A549EF10s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib77CCEB48899C14EEB09222035514172Ds1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib2F8DF3E52C1D92DB44E82AD47F77EE63s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib2F8DF3E52C1D92DB44E82AD47F77EE63s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibEDDDCE1C38A1BF4AA033F1373A968861s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib91867FBE648E441C67B97FE5EFCBD15As1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib91867FBE648E441C67B97FE5EFCBD15As1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib5EDC5CE86F5F5D98D77AB1E14F40C4CDs1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bib5EDC5CE86F5F5D98D77AB1E14F40C4CDs1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibA0D66C71EE8AC6AF39F7BEC13929A352s1
http://refhub.elsevier.com/S0304-3975(22)00639-9/bibF33F39E914CCA36937F813E762FEC786s1

	A fault diagnosis method to defend scapegoating attack in network tomography
	1 Introduction
	2 Related work
	2.1 Network tomography
	2.2 Guaranteeing identifiable is difficult
	2.3 Scapegoating problems and existing defense strategies

	3 Problem formulation
	3.1 Network tomography model
	3.2 Scapegoating attack model

	4 Defense strategy
	4.1 What to defend?
	4.2 Key observations
	4.3 Defense methodologies
	4.4 Minimum cost defense for single scapegoat link
	4.5 Minimum cost defense for multiple links
	4.6 Minimum number defending path generation

	5 Performance evaluation
	5.1 Experiment setup
	5.2 Results of defense strategy

	6 Conclusion
	Declaration of competing interest
	References

