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DMS: Low-overlap Registration of 3D Point
Clouds with Double-layer Multi-scale Star-graph

Hualong Cao, Yongcai Wang, Member, IEEE, and Deying Li

Abstract—Registering 3D point clouds with low overlap is challenging in 3D computer vision, primarily due to difficulties in identifying
small overlap regions and removing correspondence outliers. We observe that the neighborhood similarity can be utilized to detect
point correspondence, and the consistent neighborhood correspondence can be used as a criterion to detect robust overlapping
regions. So that a Double-layer Multi-scale Star-graph (DMS) structure is proposed to detect robust correspondences using two
different types of multi-scale star-graphs. The first-layer Multi-scale Neighbor Feature Star-graphs (MNFS) takes each point as the
center and its multi-scale nearest neighbors as the leaves. The MNFS enables to establish the initial correspondence candidate set
between the two point clouds based on multi-scale neighborhood topology and feature similarity. Subsequently, each pair of
corresponding points find their nearest neighbors within the correspondence sets to construct a Multi-scale Matching Star-graphs
(MMS) on each side, so the mutual correspondence relationships between the MMS vertices are identified. These identified mutual
correspondences are treated as vertices to construct the Multi-scale Correspondence Star-graphs (MCS) , that indicate the
relationships among the correspondences. We design edge weight and vertex weight criterion in MCS to detect only the robust
correspondence set that has strong neighborhood consistency, so as to reject the outliers. Finally, the point cloud registration is
conducted based on the detected robust correspondence. The experimental results demonstrate clearly that the proposed DMS
method exhibits superior robustness when compared to existing state-of-the-art registration algorithms. The code of this study will be
available at https://github.com/HualongCao/DMS.

Index Terms—point cloud registration, low overlap, Double-layer Multi-scale Star-graph, Multi-scale Neighbor Feature Star-graphs,
Multi-scale Correspondence Star-graphs, Multi-scale Matching Star-graphs, superior robustness

✦

1 INTRODUCTION

3D Point clouds registration (PCR) is to accurately register two
point clouds by estimating an accurate pose transformation,

which is a fundamental task in various fields [1], [2], [3] such
as computer graphics [4], [5], [6], [7], computer vision [8], [9],
[10], [11], and visualization [12], [13], [14], [15]. Current PCR
algorithms can be categorized into traditional methods [16], [17]
and learning-based methods [18], [19], [20], [21]. For traditional
methods, the iterative closest point (ICP) algorithm [16] and its
variants [22], [23], [24], [25] are undoubtedly the most well-
known methods for PCR. Another traditional approach is based
on random sample consensus (RANSAC) [26] and its variants
[27], [28], [29], [30]. However, in recent years, learning-based
methods [31], [32], [33], [34] have gained increasing attention in
PCR especially with deep learning approaches [35], [36], [37],
[38], [39].

While PCR has made significant advancements, the problem
of Low overlapped Registration (LoR) of 3D point clouds remains

• Hualong Cao, Yongcai Wang and Deying Li are with the School of Infor-
mation Renmin University of China, Intelligent Network and Optimization
Laboratory, Renmin University of China, Beijing 100872 , China.
E-mail: caohualong@ruc.edu.cn; ycw@ruc.edu.cn; deyingli@ruc.edu.cn.

• This work was supported in part by the National Natural Science Founda-
tion of China under Grants No. 61972404 and No. 12071478. Specifically,
Dr. Wang is supported in part by the National Natural Science Foundation
of China Grant No. [61972404], Public Computing Cloud, Renmin Uni-
versity of China, and the Blockchain Lab. School of Information, Renmin
University of China. Dr. Li is supported in part by the National Natural
Science Foundation of China Grant No. [12071478]. Dr. Cao is supported
by the Fundamental Research Funds for the Central Universities, and the
Research Funds of Renmin University of China Grant No. [23XNH146],
and Supported by the Outstanding Innovative Talents Cultivation Funded
Programs 2023 of Renmin University of China.

• Corresponding author: Yongcai Wang

challenging, and the low overlap regime is highly relevant in
practical applications. This is because that ensuring a high degree
of overlap is often challenging in many practical scenarios, e.g.,
when traversing narrow and long tunnels, or in situations of
obstruction or limited field of view. Meanwhile, data acquisition
often involves high costs, leading practitioners to aim for minimal
scanning and capturing to obtain only the necessary overlaps.

For its importance, LoR has recently garnered significant
research attentions. The first well-known work is PREDATOR
[35], which leveraged an attention mechanism to effectively iden-
tify salient points within overlapping regions. Building upon this
foundation, subsequent research endeavors have been undertaken.
CoFiNet [36] introduced a coarse-to-fine method for hierarchical
correspondence extraction, which proposed super-point. This pro-
cess initially matches the super-points at a coarse scale, followed
by the extension to patches at finer scales to enhance point
correspondence refinement. Furthermore, GeoTransformer [37]
contributed to the field by focusing on the acquisition of point
cloud geometric features during the initial rough matching stage,
building upon the work of CoFiNet [36]. Recently, PEAL [38]
introduced an explicit attention learning model incorporating prior
embeddings, inspired by the insights gleaned from GeoTrans-
former [37], aiming to enhance the robustness of the super-point
matching within the LoR framework. From these methods, we can
observe that superpoint matching has proven to be very effective
in solving LoR.

While LoR has been the subject of extensive research, there
remain certain issues that current methods fail to address. We
delineate three pivotal challenges within the domain of LoR,
which motivate the design of DMS.
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Fig. 1. Illustration of Peripheral Points at Overlap Boundaries in PCR,
the red highlighted points represent peripheral points, which located
at the overlap boundaries between point clouds, are key for accurate
alignment, especially in low-overlap scenarios.

1) Limited Usage of the Overlapped Peripheral Points: In
PCR, “peripheral points” refer to those points that lie
at the edges or boundaries of the overlapping regions
between two point clouds, as shown in Fig. 1. These points
offer critical geometric information that is not available
for points in the central overlap zone. This information
includes clues about the shape and extent of the ob-
jects or scenes represented by the point clouds, which
are invaluable for aligning the clouds more accurately,
especially in scenarios of low overlap. However, many
existing registration methods [35], [36], [37], [38], [40]
primarily rely on the internal points within the overlap-
ping regions, with limited consideration for the peripheral
points. Nevertheless, as the degree of overlap decreases,
the proportion of the peripheral points increases. Under-
scoring them loses useful information in LoR scenarios.
Moreover, these peripheral points within the overlapping
areas harbor valuable insights regarding the orientation
and position of the point clouds.

2) Ambiguity Issue in Correspondences: Current methods
[35], [36], [37], [38] primarily rely on the feature con-
sistency for registration. Nonetheless, as the degree of
overlapping decreases, capturing critical features in the
low-overlap regions becomes challenging, and the detri-
mental influence of the features in the non-overlapping
regions amplifies. Consequently, multiple candidate cor-
respondences exhibit similarities, introducing ambiguity
and diminishing the availability of meaningful correspon-
dences.

3) Outliers and Noise Issue: Low-overlap regions exhibit
heightened vulnerability to the adverse effects of outliers
and noise. Existing algorithms [35], [36], [37], [41] strug-
gle to distinguish outliers from valid correspondences.
This inability to effectively differentiate between erro-
neous and meaningful associations can exert a pronounced
impact on the overall accuracy of the registration, poten-
tially leading to misalignments and suboptimal results.

To overcome above challenges, the crucial problem is how
to discover and best utilize the overlapped points, and how to
eliminate the correspondence ambiguity and the outliers. For this

purpose, this study propose a novel Double-layer Multi-scale Star-
graph (DMS) strategy to efficiently obtain robust correspondences
in low-overlapping point clouds.

The DMS was designed primarily because of the star-graph’s
unique topology and properties. Compared to other graph struc-
tures like fully connected graphs, ring graphs, or arbitrary topol-
ogy graphs, the star-graph offers a balance between computational
efficiency and the ability to effectively capture and process local
contextual information, ideal for LoR. In star-graphs, a central
node connects with all others, enabling efficient information
aggregation and rapid context understanding. This structure is
particularly adept at highlighting local features and geometries
relative to a central point, thereby enhancing model performance.
Additionally, star-graphs fit well into multi-scale frameworks,
allowing for hierarchical processing and global insight generation
through the combination of multiple star-graphs.

Given the super-point matching has proven to be very effective
in solving LoR [36], [37], [38], DMS is a multi-scale star graphs
based on the super-points, which can quickly screen out a small
number of possible matching candidates, reducing the computa-
tional complexity of fine matching. To enhance the usage of the
peripheral super-points, we design multi-scale star graphs, so that
the peripheral points show similarity in the small scale graphs and
will not impact the similarity of inner points on other scales.

Based on this idea, we firstly construct the first-layer Multi-
scale Neighbor Feature Star-graphs (MNFS) on both the source
point cloud P and the target point cloud Q. In the MNFS,
each super-point is the center of a star graph and the leaf nodes
are constructed based on the multi-scale nearest neighbors. The
point features are integrated into the star graph, so that similarity
between star graphs are calculated by the feature-based star graphs
at the same scale, resulting in the establishment of the initial cor-
respondence. However, the initial correspondences contain many
ambiguities and outliers. To refine and extract the correct corre-
spondences, we construct a second-layer Multi-scale Correspon-
dence Star-graphs (MCS) based on the initial correspondences.
To construct the MCS, we firstly construct a multi-scale matching
star (MMS) graph for each corresponding point by identifying
the nearest neighbors in the corresponding set. Then the mutual
correspondences that exist simultaneously between these MMS
vertices are found. So that the multi-scale MCS is constructed
using these mutual correspondences as vertices, which indicate the
relationship among the correspondence. We design edge weights
and vertex weights to evaluate the neighborhood consistency, i.e.,
the neighborhood consistency among the neighboring correspon-
dences. As a result, the incorrect correspondences are filtered out,
leaving a substantial number of accurate correspondences for the
subsequent point registration. The main contributions of our work
are summarized below.

• DMS: DMS handles the registration problem of low-
overlapping point clouds by constructing a two-level star
graph. The first layer is MNFS, which selects similar
points based on multi-scale neighborhood topology and
feature similarity to establish initial correspondence. The
second layer is MCS, which is used to evaluate the
detected correspondences to reserve only robust corre-
spondences with strong neighborhood consistency. DMS
provides a novel approach to improve the accuracy and
robustness of low-overlap point cloud registration.

• MNFS: In order to enhance the neighborhood and fea-
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ture consistency of super-points, this study designed the
MNFS method, which improves the accuracy of the overall
registration process while maintaining the consistency of
information between super-points.

• MCS: In the MCS stage, we construct the MCS by
developing MMS for each point pair and identify mutual
correspondences between the MMS graphs. Then the mu-
tual correspondences are treated as vertices to generate
MCS graphs, which are used to identify correspondences
that meet neighborhood consistency criteria. This process
ultimately filters and refines the correspondences, leading
to an accurate and efficient point registration within the
MCS framework.

The remainder of this article is organized as follows: Section 2
reviews the related work, providing a background and situating our
study within the existing body of research. Section 3 provides a
detailed description of the DMS method, including its theoretical
foundations and implementation details. Section 4 evaluates the
DMS method, including a comparison with state-of-the-art meth-
ods, an ablation study, and a visual experiment. Finally, Section 5
concludes the paper with a summary of our findings and discusses
potential avenues for future research.

2 RELATED WORK

2.1 Traditional PCR Methods

For traditional PCR methods, there are well-known methods such
as ICP [16], RANSAC [26] and their derivatives. ICP [16] is one
of the most classic PCR methods. It iteratively finds the optimal
rigid body transformation between two point clouds to minimize
the distance between corresponding points. However, the ICP al-
gorithm is highly sensitive to the accuracy of the initial alignment,
and the number of iterations needs to be adjusted based on the
specific scenario. As a result, subsequent advancements have been
made to improve ICP-based PCR methods. For instance, GICP
[22] introduces a more expressive probability model and integrates
it into the ICP framework to filter out incorrect correspondences.
GoICP [23] incorporates ICP into the BnB scheme to ensure
global optimization while accelerating the registration process.

RANSAC [26] is an iterative algorithm that samples corre-
spondences and generates geometric estimations until a satisfac-
tory solution is achieved. However, evaluating these estimations
can be time-consuming and sensitive to noise. To address these
challenges, researcher have proposed various improvements. For
example, SAC-IA [42] samples correspondences across the point
cloud and uses the Huber penalty for evaluation. GC-RANSAC
[27] applies the graph-cut algorithm during local optimization,
while CG-SAC [28] incorporates normal information. SAC-COT
[43] ranks and samples ternary loops from the compatibility graph.
Despite these efforts, these methods still face challenges in terms
of time efficiency and accuracy when dealing with high outlier
rates.

Apart from the mentioned traditional methods, there exist other
approaches. EMTR-SSC [17] enhances PCR with evolutionary
multi-task optimization, solution space cutting, and introduces M-
estimator Chamfer Distance for precision and overlap handling.
Recently, MAC [40] constructs a compatibility graph using the
correspondence information and obtains a robust correspondence
relationship by searching for a maximal clique within the graph,
thereby achieving optimal registration.

2.2 Learning-Based LoR Methods
Deep learning-based algorithms have gained widespread popular-
ity in the field of LoR. These algorithms leverage the power of
neural networks to learn feature representations and registration
models for point clouds. They encompass various approaches,
including extracting high-dimensional feature vectors using en-
coder networks and end-to-end deep learning registration net-
works. These techniques have garnered significant interest among
researchers working in the field.

In the field of LoR, several notable methods based on deep
learning have been developed. FCGF [44] utilizes a fully con-
volutional neural network to compute features for point clouds
without the need for keypoint detection. D3Feat [45] employs a
fully convolutional network to extract local information from point
clouds and incorporates a joint learning framework for detecting
and describing 3D local features. Predator [35] integrates an at-
tention mechanism to extract salient points in overlapping regions,
enabling robust registration even with low overlap rates. Spinnet
[41] focuses on extracting rotationally invariant and informative
local features to achieve precise registration.

Additionally, other methods focus on effectively distinguishing
inliers and outliers in correspondences. Deep global registration
(DGR) [46] and 3DRegNet [47] utilize end-to-end neural networks
with operators such as sparse convolution and point-by-point
MLP to classify correspondences. PointDSC [48] explores spatial
consistency to remove outlier correspondences, while Fu et al. [49]
proposed a deep graph matching framework (RGM) for robust and
accurate point-to-point correspondences. Recent advancements
include detection-free methods, which estimate transformations
in an end-to-end manner. CoFiNet [36] extracts correspondences
without the need for keypoint detection, and GeoTransformer
[37] learns geometric features for robust super-point matching,
even in scenarios with low overlap, while remaining invariant
to rigid transformations. PEAL [38] is a prior-embedded explicit
attention learning model that addresses feature ambiguity in LoR
by incorporating prior knowledge and explicitly learning one-way
attention with assumed overlap points.

3 METHOD

3.1 Problem Explanation and Method Process
The purpose of LoR is to align two or more point cloud data sets
so that their corresponding points are as close or coincident as
possible after being transformed into the same coordinate system.
It is necessary to find a transformation matrix or transformation
function to map the source point cloud P = {pm}Mm=1 to the
coordinate system of the target point cloud Q = {qn}Nn=1, where
pm and qn represent the location information of points in point
cloud P and Q, respectively, and both of which are 3-dimensional
(3D). Given a correspondence set C = (PC ,QC) which indicates
|C| pairs of one-to-one point correspondence, we denote T(C) the
optimal transformation that can best register PC and QC , which
is a function of C and can be carried out by ICP [16] etc..

T(C) = argmin
T

∑
pi∈PC ,qi∈QC

∥T · pi − qi∥22 (1)

Our goal is to find the optimal correspondence C⋆, so that the
obtained transformation T(C⋆) is as close as the ground truth TG

of the two point clouds P and Q.

C⋆ = argmin
C

∥TG ·T−1(C)∥22 (2)
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Fig. 2. The overall pipeline of our method. KPConv downsamples the input cloud and uses GeoTransformer for super-point feature extraction.
MNFS utilizes the consistency of spatial structure and features to extract high-quality initial super-point correspondences between P̃ and Q̃. MCS
solves correspondence relationships ambiguity and mismatching through neighborhood consistency. The super-point correspondences are then
propagated to dense points P̄ and Q̄ through the point matching module, and finally, the transformation is calculated.

Note that in LoR, PC and QC generally take very small
proportions in P and Q. To detect PC and QC correctly, this work
adopts a coarse-to-fine method for hierarchical correspondence
extraction. We initially utilize KPConv-FPN to downsample the
input point cloud and generate super-points. The super-point
features are obtained based on GeoTransformer [37] (Section 3.2).
We build MNFS based on these super-points. In constructing
the MNFS, we integrate the feature information of super-points
into each node, and then perform super-point matching to obtain
the initial correspondence between the super-points (Section 3.3).
Then, the MCS is constructed based on the established correspon-
dence, and the neighborhood consistency is used as a screening
criterion to exclude those star diagrams with poor consistency
in the neighborhood, thereby retaining more reliable and robust
correspondences (Section 3.4). At last, the points on each pair of
super-point correspondences are registered, and then the optimal
transformation matrix is recovered (Section 3.5). The pipeline is
illustrated in Fig. 2.

To facilitate a better understanding of the symbolic expres-
sions and analyses presented in this paper, Table 1 (Notation
List) enumerates the primary mathematical symbols and variables
employed, accompanied by brief definitions or descriptions. To
avoid redundancy, similar symbols are not individually listed.

TABLE 1
Notation List

P Input source point cloud M Number of points in P
P̃ Super points in P M̃ Number of super-points in P̃
P̃F Features of P̃ P̄ Downsampled point in P
P̄F Features of P̄ M̄ Number of in P̄

p̃i ith super-point in P̃ Sp̃hi
h-star graph centered at p̃i

M1 Scales of MNFS M2 Scales of MCS

SF
p̃hi

feature vector of Sp̃hi
s̃chi,j Similarity of SF

p̃hi
and SF

q̃hj

C̃ Initial correspondences set C C̃ after deduplication

cz A correspond in C p̃c
z Points in P within cz

Sh
p̃c
z

h-star graph centered at p̃c
z Sh

cz h-star graph centered at Sh
p̃c
z

cẑl Leaf node of Sh
cz

p̃c
zl

Points in P within cẑl

Mcz Set of cẑl Nzh Number of leafs in Sh
cz

wzl Weight of the edge of Sh
cz

Wchz
Weights of Sh

cz

3.2 Superpoint Representation and Feature Extraction

Following GeoTransformer [37], the KPConv-FPS backbone [50],
[51] is first adopted to downsample the input point cloud into
multi-level super-points and learn the corresponding features. In
KPConv-FPS backbone, the original point cloud P and Q are
aggregated into downsampled points P̄ ∈ RM̄×3 and Q̄ ∈ RN̄×3

and their features P̄F ∈ RM̄×d̄ and Q̄F ∈ RN̄×d̄ from the first
level are also extracted, which for utilization in point matching
after DMS. And then the downsampled points P̄ and Q̄ and their
features P̄F and Q̄F also through a series of ResNet-like block
and GeoTransformer, and then the super-points P̃ ∈ RM̃×3 and
Q̃ ∈ RÑ×3 and their features P̃F ∈ RM̃×d and Q̃F ∈ RÑ×d are
extracted separately.

3.3 Superpoint Matching Based on MNFS

The motivation behind MNFS is to significantly enhance point
cloud registration by integrating multi-scale neighbor feature sim-
ilarity and star graph structures, addressing the inherent limitations
of traditional super-point representations and improving both ac-
curacy and efficiency in capturing complex spatial relationships.
And the current super-point representation process exhibits poor
compatibility with surrounding neighbor information, with the
neighbor information being of utmost value for registration. More-
over, overlapping peripheral super-points are often designated as
outliers by existing methods. To address these challenges, this
study introduce the MNFS, specifically designed to enhance both
neighbor and feature consistency among super points.

3.3.1 Multi-scale Star Graph Construction
The motivation for utilizing multi-scale star graph stems from the
imperative to intricately capture complex spatial relationships and
feature dynamics across scales. This step aims to elevate matching
precision by enhancing discriminatory power, diminishing the
impact of noise and outliers, and optimizing the engagement of
peripheral points in point cloud registration tasks.

Star graph can aggregate the information of internal points
(ie. central point) and leaf nodes (ie. neighborhood points), which
has been proven to be important in vision. We construct a h-star
graph SP̃h = {Sp̃h

i
}M̃i=1 for each node p̃i, and for each node

q̃j as well. We construct each h-star by picking the h nearest
neighbors, so a h-star Sp̃h

i
can be defined as Sp̃h

i
= {Vp̃h

i
, Ep̃h

i
},
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where Vp̃h
i

= {p̃i, p̃1i , · · · , p̃hi } are h nearest neighbors of p̃i
and Ep̃h

i
= {(p̃i, p̃1i ), · · · , (p̃i, p̃hi )}. So Sp̃h

i
is a graph with

one internal node and h leaves. The same process applies to
q̃j . The star graph construction process of MNFS is shown in
the Fig. 3. However, it is evident that using a fixed h value
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Fig. 3. Illustration of the MNFS star graph construction process, demon-
strating the systematic aggregation of neighborhood points into multi-
scale star graphs with varying levels of h values.

for selecting edges in the graph could lead to several issues: 1)
The fixed-scale star graph fails to capture varying structures and
patterns at different scales, resulting in less comprehensive and
accurate analysis outcomes; 2) The fixed-scale star graph does not
adapt well to varying density distributions, leading to suboptimal
performance with non-uniform data. To address the mentioned
issues, a multi-scale strategy is employed, so that the peripheral
points show similarity in the small scale graphs and will not impact
the similarity of inner points on other scales. Specifically, we take
the parameter h on multiple values, i.e., h = {hm}M1

m=1, where
M1 stands for the number of scales for the MNFS graph. So for
each p̃i, M1 star graphs Sp̃h

i
, h = h1, · · · , hM1 with different

sizes are constructed for it.
By analyzing features at multi-scales, can differentiate be-

tween features that may appear similar at a single scale but
diverge at another. For instance, some features might be indis-
tinct at a lower scale but become highly distinctive at a higher
scale, and vice versa. This multi-scale analysis provides a richer
feature representation, enhancing the discrimination power of our
matching algorithm. It allows us to identify correspondences with
greater precision by considering how feature relevance changes
across scales. In addition, sensitivity to noise and outliers can also
be reduced by utilizing multi-scale information, as features that
might be ambiguous or misleading at one scale can be clarified or
corroborated at another.

3.3.2 Fusing Features on the h-stars
The motivation for integrating features on the h-stars is to aug-
ment the star graph with a detailed layer of contextual information

from various scales, crucial for improving superpoint matching
accuracy. This approach combines the characteristics of the central
superpoint with those of its neighboring points, creating enriched,
multi-scale representations. Such representations are instrumental
in achieving precise matching by capturing the nuanced variations
in feature relationships at different scales.

For each Sp̃h
i

, it is evident that it comprises one central point
p̃i and h neighboring points, solely containing spatial location
information. To further enrich the information in the star graph, the
feature information P̃F and Q̃F are merged into the star graph.
By integrating features from both the central superpoint and its
neighbors, the methodology encapsulates a harmonious blend of
local and global contextual information, pivotal for the accuracy
of superpoint matching. Fig. 4 provides a graphical explanation
of feature fusion. Take Sp̃h

i
as an example, Sq̃hi

is the same. We
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Fig. 4. Illustration of the process of fusing features within a MNFS star
graphs. Starting from a central point p̃i and incorporating h neighboring
points, feature vectors are sequentially added based on their distance,
creating a composite feature vector that combines both local geometry
and associated features.

start from the center point p̃i, and sequentially extract features
for the leaf nodes based on their increasing order of distances.
These feature vectors are concatenated with the feature vector of
the central node to form a (d · h + d)-dimensional composite
feature vector, represented as SF

p̃h
i

∈ R1×(d+d·h). Therefore,
the amalgamation of these individual composite vectors across
all superpoints in P yields a global feature set, represented as
SF
P̃h ∈ RM̃×(d+d·h).

It is important to note that prior to add features to the star
graph, the feature vector of the considered vertex itself is put at
the first place, i.e., P̃F and Q̃F. It can also be said that it is feature
when h = 0. Then, as we consider different scales of h, features
are sequentially incorporated into the star graph. Therefore, h is
redefined as h = {0, h1, · · · , hM1

}.

3.3.3 Superpoint Matching
The primary motivation for employing MNFS in super-point
matching lies in its ability to precisely match points by lever-
aging the inherent geometric and feature-based similarities across
point clouds, thereby enhancing accuracy and robustness against
ambiguities and noise in complex point cloud registration tasks.

The proposed method for finding super-point correspondences
utilizes feature matching based on MNFS. The process involves
performing similarity calculations on the features of each super-
point obtained from the same-scale star graphs. Cosine similarity
is employed for the calculation:

s̃chi,j =
SF
p̃h
i
· SF

q̃hj

max(∥SF
p̃h
i
∥2 · ∥SF

q̃hj
∥2, ϵ)

(3)

where i = {1, · · · , M̃}, j = {1, · · · , Ñ}, ϵ = 1e − 8, ϵ is a
small value to avoid division by zero. According to Eq. (3), we
can get M1 + 1 similarity matrices s̃ch about SF

P̃h and SF
Q̃h .
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However, there are cases where a single point cloud contains
a large area with similar characteristics, and the another point
cloud may have multiple similar areas as well. To enhance global
robustness and minimize the potential for ambiguous matches, a
dual-normalization operation [52], [53] is applied to s̃ch during
the process:

schi,j =
s̃chi,j∑M̃

k=1 s̃c
h
i,k

·
s̃chi,j∑Ñ

k=1 s̃c
h
k,j

(4)

Therefore, the similarity matrix s̃ch becomes sch, and then
the top-Kh super-point correspondences are selected from each
similarity matrices sch. Therefore, totally Z̃ =

∑M1

h=0 Kh super-
point correspondences are detected. We denote the index of the
detected correspondences by z̃ ∈ [1, Z̃] and denote the initial
correspondence set by C̃. So that there are:

C̃ = {cz̃}Z̃z̃=1, cz̃ = (p̃c
z̃, q̃

c
z̃) (5)

where cz̃ denotes a correspondence, i.e., p̃c
z̃ ∈ P̃, q̃c

z̃ ∈ Q̃.
But note that these correspondences may contain duplicates

and require deduplication. After deduplication, the number of
super-point correspondences is denoted as Z , and Z ≤ Z̃ .
Therefore, C is redefined as:

C = {cz}Zz=1, cz = (p̃c
z, q̃

c
z) (6)

where P̃c = {p̃c
z}Zz=1, Q̃c = {q̃c

z}Zz=1, and P̃c ∈ P̃, Q̃c ∈ Q̃.

3.4 Mismatches Rejection Based on MCS

The motivation for implementing MCS for mismatches rejection is
to refine and optimize the correspondence selection process by uti-
lizing detailed neighborhood consistency and mutual relationships
among correspondences, thus overcoming the limitations of the
top-K method in low-overlap scenarios, and effectively reducing
incorrect matches to significantly enhance the reliability of point
cloud registration outcomes.

Incorporating feature star graphs to establish super-point cor-
respondences ensures the inclusion of the majority of points in the
overlapping area. However, in low-overlap scenarios, the top-K
approach might select a few incorrect correspondences due to the
challenge of setting an optimal K value. Variations in the input
point clouds may lead to occasional erroneous correspondences.
Hence, outlier rejection techniques are crucial to mitigate ambigu-
ity and reduce inaccuracies in super-point correspondences.

The graph space can more accurately depict the affinity rela-
tionship between correspondences than the Euclidean space [40].
Therefore, based on the correspondences obtained above, this
study proposed MCS, which is a star graph constructed for each
pair of correspondences. Then the star graphs satisfying the accep-
tation condition are extracted, which correspond to the correct cor-
respondences. The MCS is constructed by firstly constructing the
Multi-scale Matching Star (MMS) graphs, which help to identify
the mutual correspondence relationships among the MMS vertices.
Then the mutual correspondence relationships are used as vertices
to construct MCS to evaluate the neighborhood consistency of
the correspondences. The detailed MCS construction process is as
following:

3.4.1 MCS Construction
The motivation for the MCS construction is to refine correspon-
dence accuracy by leveraging mutual relationships and neigh-
borhood consistency among Multi-scale Matching Star (MMS)
graphs.

The schematic diagram of the MCS construction is shown in
Fig. 5 and Fig. 6. After obtaining the correspondence sets P̃c and
Q̃c, Multi-scale Matching Star (MMS) graphs are constructed for
each point in P̃c and Q̃c. Then the set of mutual correspondences
among the MMS vertices are identified. Then each mutual corre-
spondence will be treated as vertices to finally generate the MCS
graph. So the MCS construction follows three steps.

0

1 2
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1
2
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1

2

0

2
1 [2,1]

[2,0]
[1,0]
[0,0]

Multi-scale
Correspondence Star

Mutual
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Multi-scale
Matching Star

Multi-scale
Matching Star

Fig. 5. The brief process of constructing MMS and MCS from input
correspondences C.

(1) Construct MMS for each matching point
For a correspondence cz = (p̃c

z, q̃
c
z), p̃c

z finds h-nearest
neighbors in P̃c to form a MMS graph, which is called Sh

p̃c
z
.

The purpose of MMS is to obtain the neighborhood informa-
tion around the corresponding cz to ensure the development of
neighborhood consistency screening work. Formally, Sh

p̃c
z

can be
defined as Sh

p̃c
z
= (V h

p̃c
z
, Eh

p̃c
z
), where V h

p̃c
z
= {p̃c

z, p̃
c
z1 , · · · , p̃

c
zh
}

are h nearest neighbors of p̃c
z found in P̃c and Eh

p̃c
z

=
{(p̃c

z, p̃
c
z1), · · · , (p̃

c
z, p̃

c
zh
)} are edges from p̃c

z to these neighbors.
Similarly, the Sh

q̃c
z

be defined as Sh
q̃c
z
= (V h

q̃c
z
, Eh

q̃c
z
), where V h

q̃c
z
=

{q̃c
z , q̃

c
z1 , · · · , q̃

c
zh
} and Eh

q̃c
z
= {(q̃c

z , q̃
c
z1), · · · , (q̃

c
z , q̃

c
zh
)}.

Note that, the MMS Sh
p̃c
z

and Sh
q̃c
z

construction also allows
for control over the scale size. By adjusting the parameter h at
different values, the number of leaf nodes in Sh

p̃c
z

and Sh
q̃c
z

varies.
Hence, this aligns with the emphasis on the importance of scale
size in the MNFS construction. The parameter h in this context is
also designed to be multi-scale h = {hm}M2

m=1, where M2 is the
number of scales in the MCS construction.

(2) Find mutual correspondence between Sh
p̃c
z

and Sh
q̃c
z

After gathering neighborhood information for the correspon-
dence point cz within the star-graphs Sh

p̃c
z

and Sh
q̃c
z

, we focus on
identifying consistent correspondences. This is done by selecting
mutual correspondences, termed cẑl = (p̃c

zl
, q̃c

zl
), from these star-

graphs. These mutual correspondences must align with the original
correspondence cz .

Specifically, we ensure that one part of the mutual correspon-
dence, p̃c

zl
(a component of cẑl ), is located within the neighbor-

hood of cz in Sh
p̃c
z
. Similarly, the corresponding point q̃c

zl
, which

aligns with p̃c
zl

in cẑl , is also found within the neighborhood of
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1. Construct MMSInput 4.Mismatches Rejection3. MCS Construction Based on 

MMS MCS

Fig. 6. Schematic diagram of the MCS process. The dots in Sh
p̃c
z

and Sh
q̃c
z

both belong to p̃c
z and q̃c

z in C. The green point and dotted line in the
figure represent the one-to-one mutual correspondence cẑl in C, and the dots at both ends of the dotted line represent p̃c

z and q̃c
z in C. The red

dots and dotted lines indicate the corresponding relationships that require evaluation to determine if the conditions are met.

cz in Sh
q̃c
z

. This step ensures that the mutual correspondences cẑl
are consistent with the original correspondence cz .

Therefor, we find mutual correspondences cẑl between Sh
p̃c
z

and Sh
q̃c
z

within C. In particularly, we find the correspondences cẑl
that satisfy Eq. (7).

Mcz
= {(p̃c

zl
, q̃c

zl
)|(p̃c

zl
∈ V h

p̃c
z
) ∩ (q̃c

zl
∈ V h

q̃c
z
)} (7)

where ∩ represents the relationship of ‘AND’. We denoted the
extracted mutual correspondences set as Mcz = {cẑl}, which
contains the correspondences cẑl = (p̃c

zl
, q̃c

zl
), where both con-

ditions p̃c
zl

belongs to V h
p̃c
z

and q̃c
zl

belongs to V h
q̃c
z

are satisfied
simultaneously. Therefore, it can be seen that Mcz ∈ C, which in
Eq. (6)

(3) MCS construction based on Mcz

Then, based on the extracted mutual correspondence set Mcz
,

each correspondence is treated as a vertex to form a new star
graph, i.e., the Multiple-scale Correspondence Star (MCS). In par-
ticular, we designate cz as the internal point of the MCS, and other
correspondences in cẑl ∈ Mcz

as the leaf nodes. Nevertheless,
the leaf nodes are currently disconnected from the internal point,
so it is essential to establish connections between these leaf nodes
and the internal point. As mentioned earlier, the Euclidean distance
within the graph space carries crucial information for visual tasks.
Hence, the Euclidean distance between the leaf node cẑl and the
internal point cz is utilized as the weight for the edge connecting
the two:

wzl =

∥∥∥∥∥p̃c
zl
− p̃c

z∥ − ∥q̃c
zl
− q̃c

z∥
∥∥∥∥

max
(
∥p̃c

zl
− p̃c

z∥, ∥q̃c
zl
− q̃c

z∥, ϵ
) (8)

This weight evaluates the similarity of the two correspon-
dences, i.e., czl = (p̃c

ẑl
, q̃c

zl
) and cz = (p̃c

z, q̃
c
z). Smaller

edge weights will be given for the correspondence pair cẑl , cz
if they are geometrically similar. After assigning weights, the
MCS Sh

cz
can be defined as Sh

cz
= (V h

cz
, Eh

czl
,Wh

czl
), where

V h
cz

= {cz, cẑl ∈ Mcz
}, Eh

czl
= {(cẑl , cz)}, Wh

czl
= {wzl}

for cẑl ∈ Mcz
. After these processes, we have successfully

obtained the star graphs set Sc = {Sh
cz
}, where z = {1, · · · ,Z},

h = {h1, · · · , hM2
}.

3.4.2 Mismatches Rejection
The motivation for mismatches rejection is to utilize neighbor-
hood consistency within star graphs for identifying true corre-
spondences, effectively filtering out inaccuracies and enhancing
registration precision.

The neighborhood consistency among true correspondences is
particularly pronounced, as they often appear in groups. Taking
inspiration from this observation, our approach leverages the
construction of the star graphs to vividly illustrate the neighbor-
hood consistency between the corresponding relationships. This
enables us to effectively filter out corresponding relationships that
demonstrate strong neighborhood consistency. In this context, this
study determines the correctness of the correspondence based on
weight considerations of the leaf nodes and the edges within the
star graph on the each scale h.

(1) Weighs of Sh
cz

.
To calculate the weight Wch

z
of the star graph Sh

cz
, we begin

by considering the weight Wh
czl

of the edge within the graph:

Wch
z
=

1

Nzh

Nzh∑
l=1

exp(−wzl) (9)
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where wzl ∈ Wh
czl

, Nzh is the number of leafs in Sh
cz

;
z = {1, · · · ,Z}, h = {h1, · · · , hM2}. Exactly, this assigns
weights to each correspondence at each scale by considering the
edge weights within the star graph. Notably, the closer correspon-
dence pairs contribute the higher weights. Subsequently, based on
the evaluated weights, the correct correspondence at each scale
can be filtered out by requiring its sum weight is higher than the
average sum weight of the same level star graphs.

Wch
z
>

1

Z

Z∑
z=1

Wch
z

(10)

By referring to Eq. (8) and Eq. (9), we can observe that a
higher weight assigned to chz indicates a greater consistency with
the surrounding corresponding relationships.

(2) Leaf nodes of Sh
cz

.
As the number of leaf nodes in Sh

cz
reflects the number of

corresponding relationships surrounding chz , it serves as a vivid
manifestation of neighborhood consistency and can be used as a
reference standard. Through extensive testing, we found that the
optimal threshold is 2h. Therefore, we establish a specific criteria
based on the following factor:

Nzh > 2h (11)

Consequently, correspondences in C that satisfy both Eq. (10)
and Eq. (11) at the same scale h are filtered out as the correct
correspondences C∗ = {cž}Žž=1, while others are dropped.

3.5 Decoding and Point Matching

Based on the established highly reliable correspondences for
super-points, we can further refine these corresponding super-
point pairs at a fine point level to extract correspondences for
individual fine points. This refinement process aims to estimate
the optimal transformation. For the specific refinement process, it
is recommended to refer to the work of GeoTransformer [37].

3.6 Loss Function

Given the DMS is an explicit one-way module and its integration
in the GeoTransformer [37] framework, we maintains the use of
the original loss function without making improvements. The loss
function is formulated as:

L = Loc + Lp (12)

where Loc represents an overlap-aware circle loss tailored for
super-point matching, and Lp embodies a point matching loss for
refining point correspondences. For an in-depth exposition, please
consult [37].

4 EXPERIMENT

In this section, an extensive experimental evaluation of the pro-
posed DMS is conducted. Firstly, the implementation details of the
experiments are introduced. Subsequently, the method is evaluated
and compared against previous state-of-the-art methods. Further-
more, an ablation study is performed to gain a comprehensive
understanding of the design. Finally, the visual experiment of
DMS and sota method is shown.

4.1 Experimental Setup
Datasets. Three datasets were considered in the study: 3DMatch
[54] and 3DLoMatch [35] for indoor scene-scale data, KITTI [55]
for outdoor scene-scale data, and ModelNet [56] for synthetic
point cloud data, and 4DMatch [57] and 4DLoMatch [57] for
non-rigid PCR. Within these datasets, 3DLoMatch is a subset of
3DMatch with point cloud pairs exhibiting an overlap rate between
10% and 30%, posing a significant challenge for algorithms.The
ModelNet dataset consists of synthetic point clouds generated
from 12,311 CAD models across 40 different classes, with Mod-
elLoNet differing from ModelNet in terms of its average overlap
rate (53.6% for ModelLoNet and 73.5% for ModelNet). 4DMatch
[57] is a comprehensive benchmark created for the registration
of non-rigid point clouds, employing animation sequences from
DeformingThings4D [58]. Based on an overlap ratio threshold of
45%, the test sequence’s point cloud pairs are divided into two
categories: 4DMatch [57] and 4DLoMatch [57].
Evaluation Criteria. The evaluation metrics in LoR include: 1)
Initial Ratio (IR) assesses the accuracy of the initial alignment by
measuring the fraction of correspondences with residuals below a
threshold RI . 2) Feature Matching Recall (FMR) evaluates the
effectiveness of feature matching by measuring the proportion
RF of point cloud pairs with a high IR. 3) Registration Recall
(RR) measures the fraction of point cloud pairs that achieve a
transformation error below a specified threshold RR, providing an
overall assessment of the registration quality. 4) Relative Rotation
Error (RRE) measures the geodesic distance between the estimated
rotation matrix and the ground truth rotation matrix. 5) Relative
Translation Error (RTE) calculates the Euclidean distance between
the estimated and ground truth translation vector. 6) The modified
chamfer distance (CD) [59] is used to assess the alignment quality
of our method compared to other methods on the ModelNet
dataset. 7) The Non-rigid Inlier Ratio (NIR) [57], [60] is the
percentage of tentative matches with residuals smaller than a
specified limit (such as 0.04 meters) according to the ground-truth
warping function. 8) Non-rigid Feature Matching Recall (NFMR)
[57], [60] is the proportion of accurate matches from the ground
truth that are correctly identified through the proposed matches.
Implementation Details. The multiscale sizes used in the exper-
iments vary depending on the density and size of the point clouds
from different benchmarks. The specific details in Table 2. As for
the network parameter setting of GeoTransformer [37], it adheres
to the standard setting of GeoTransformer [37]. The implementa-
tion and evaluation of our DMS approach were conducted using
PyTorch [61] on a Intel(R) Xen(R) Silver 4116 CPU@2.10GHz
and 4 NVIDIA RTX 3090 GPUs.

TABLE 2
Parameter Setting Details.

Datasets h of MNFS h of MCS K

3DMatch [2, 4, 8, 16] [3, 5, 8] [256, 128, 64, 32, 16]

KITI [4, 8, 16, 32] [4, 6, 8] [256, 128, 64, 64, 32]

ModelNet [2, 4, 8] [3, 5, 7] [128, 64, 32, 16]

4DMatch [1, 2, 4, 6] [3, 5, 7] [256, 128, 64, 32, 16]

4.2 Comparative Experiment
3DMatch and 3DLoMatch. Following the methodology in-
troduced by GeoTransformer [37], we conduct a comprehensive
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TABLE 3
Scene-wise registration results on 3DMatch and 3DLoMatch. Boldfaced numbers indicate the DMS performances

Dataset 3DMatch 3DLoMatch
Scene Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Study Lab Mean Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Study Lab Mean

Registration Recall (%) RR
FCGF 98.0 94.3 68.6 96.7 91.0 76.1 71.1 85.1 60.8 42.2 53.6 53.1 38.0 16.1 30.4 40.1
D3Feat 96.0 86.8 67.3 90.7 88.5 78.2 64.4 81.6 49.7 37.2 47.3 47.8 36.5 15.7 31.9 37.2
Predator 97.6 97.2 74.8 98.9 96.2 85.9 73.3 89.0 71.5 58.2 60.8 77.5 64.2 45.8 39.1 59.8
CoFiNet 96.4 99.1 73.6 95.6 91.0 84.6 84.4 89.3 76.7 66.7 64.0 81.3 65.0 53.4 69.6 67.5

GeoTransformer 98.9 97.2 81.1 98.9 89.7 88.5 88.9 91.5 85.9 73.5 72.5 89.5 73.2 55.3 75.7 74.0
DMS 99.1 98.2 84.6 99.0 91.3 90.5 90.9 94.3 87.2 76.3 75.8 90.7 76.8 59.3 78.1 77.3

Relative Rotation Error (◦) RRE
FCGF 1.767 1.849 2.210 1.867 1.667 2.417 1.792 1.949 2.904 3.229 3.277 2.768 2.801 3.372 4.006 3.147
D3Feat 2.016 2.029 2.425 1.990 1.967 2.400 2.114 2.161 3.226 3.492 3.373 3.330 3.165 3.708 3.619 3.361
Predator 1.861 1.806 2.473 2.045 1.600 2.458 1.926 2.029 3.079 2.637 3.220 2.694 2.907 3.046 3.412 3.048
CoFiNet 1.910 1.835 2.316 1.767 1.753 1.639 2.345 2.011 3.213 3.119 3.711 2.842 2.897 4.126 3.138 3.280

GeoTransformer 1.797 1.353 1.797 1.528 1.328 1.571 1.678 1.625 2.356 2.305 2.541 2.455 2.490 3.010 2.716 2.547
DMS 1.703 1.238 1.683 1.486 1.306 1.536 1.559 1.518 2.108 2.264 2.351 2.313 2.276 2.734 2.518 2.294

Relative Translation Error (m) RTE
FCGF 0.053 0.056 0.071 0.062 0.061 0.055 0.090 0.066 0.084 0.097 0.076 0.101 0.084 0.144 0.140 0.100
D3Feat 0.055 0.065 0.080 0.064 0.078 0.049 0.064 0.067 0.088 0.101 0.086 0.099 0.092 0.146 0.135 0.103
Predator 0.048 0.055 0.070 0.073 0.060 0.065 0.063 0.064 0.081 0.080 0.084 0.099 0.096 0.101 0.130 0.093
CoFiNet 0.047 0.059 0.063 0.063 0.058 0.044 0.075 0.062 0.080 0.078 0.078 0.099 0.086 0.131 0.123 0.094

GeoTransformer 0.042 0.046 0.055 0.055 0.046 0.050 0.053 0.053 0.062 0.070 0.071 0.080 0.075 0.107 0.083 0.074
DMS 0.033 0.034 0.042 0.043 0.041 0.047 0.046 0.045 0.057 0.067 0.063 0.068 0.063 0.082 0.071 0.058

comparison of our method with state-of-the-art approaches includ-
ing PerfectMatch [62], FCGF [44], D3Feat [45], SpinNet [41],
Predator [35], YOHO [63], CoFiNet [36], GeoTransformer [37],
and PEAL [38] across three key metrics: FMR, IR, and RR. From
the results presented in Table 4, it is evident that our method
outperforms the previous approaches in all evaluation metrics.
This demonstrates the superiority and effectiveness of our method
compared to the existing methods.

TABLE 4
Evaluation results on 3DMatch and 3DLoMatch. Boldfaced numbers

indicate the best performances, and the second best performances are
underlined.

Dataset 3DMatch 3DLoMatch
Samples 5000 2500 1000 500 250 5000 2500 1000 500 250

Feature Matching Recall (%) FMR
PerfetMatch 95.0 94.3 92.9 90.1 82.9 63.6 61.7 53.6 75.2 34.2
FCGF 97.4 97.3 97.0 96.7 96.6 76.6 75.4 74.2 71.7 67.3
D3Feat 95.6 95.4 94.5 94.1 93.1 67.3 66.7 67.0 66.7 66.5
SpinNet 97.6 97.2 96.8 95.5 94.3 75.3 74.9 72.5 70.0 63.6
Predator 96.6 96.6 96.5 96.3 96.5 78.6 77.4 76.3 75.7 75.3
YOHO 98.2 97.6 97.5 97.7 96.0 79.4 78.1 76.3 73.8 69.1
CoFiNet 98.1 98.3 98.1 98.2 98.3 83.1 83.5 83.3 83.1 82.6
GeoTransformer 97.9 97.9 97.9 97.9 97.3 88.3 88.6 88.8 88.6 88.3
PEAL 99.0 99.0 99.1 99.1 98.8 91.7 92.4 92.5 92.9 92.7
DMS 99.1 99.2 99.2 99.1 98.8 92.3 92.8 93.1 93.5 93.3

Inlier Ratio (%) IR
PerfetMatch 36.0 32.5 26.4 21.5 16.4 11.4 10.1 8.0 6.4 4.8
FCGF 56.8 54.1 48.7 42.5 34.1 21.4 20.0 17.2 14.8 11.6
D3Feat 39.0 38.8 40.4 41.5 41.8 13.2 13.1 14.0 14.6 15.0
SpinNet 47.5 44.7 39.4 33.9 27.6 20.5 19.0 16.3 13.8 11.1
Predator 58.0 58.4 57.1 54.1 49.3 26.7 28.1 28.3 27.5 25.8
YOHO 64.4 60.7 55.7 46.4 41.2 25.9 23.3 22.6 18.2 15.0
CoFiNet 49.8 51.2 51.9 52.2 52.2 24.4 25.9 26.7 26.8 26.9
GeoTransformer 71.9 75.2 76.0 82.2 85.1 43.5 45.3 46.2 52.9 57.7
PEAL 72.4 79.1 84.1 86.1 87.3 45.0 50.9 57.4 60.3 62.2
DMS 73.6 80.8 85.5 87.3 88.1 47.8 51.6 58.2 61.5 63.8

Registration Recall (%) RR
PerfetMatch 78.4 76.2 71.4 67.6 50.8 33.0 29.0 23.3 17.0 11.0
FCGF 85.1 84.7 83.3 81.6 71.4 40.1 41.7 38.2 35.4 26.8
D3Feat 81.6 84.5 83.4 82.4 77.9 37.2 42.7 46.9 43.8 39.1
SpinNet 88.6 86.6 85.5 83.5 70.2 59.8 54.9 48.3 39.8 26.8
Predator 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1
YOHO 90.8 90.3 89.1 88.6 84.5 65.2 65.5 63.2 56.5 48.0
CoFiNet 89.3 88.9 88.4 87.4 87.0 67.5 66.2 64.2 63.1 61.0
GeoTransformer 92.0 91.8 91.8 91.4 91.2 75.0 74.8 72.2 74.1 73.5
PEAL 94.6 93.7 93.7 93.9 93.4 81.7 81.2 80.8 80.4 80.1
DMS 95.2 94.3 94.1 95.0 94.6 82.3 81.8 81.5 81.2 80.7

In the comparison of registration results in Table 5 without
using RANSAC under the experimental guidelines of GeoTrans-
former [37], the DMS (weighted SVD) approach achieved a
registration recall of 90.3% on the 3DMatch dataset and a reg-
istration recall of 68.4% on the 3DLoMatch dataset. The result of
3DLoMatch surpassed GeoTransformer’s performance by 8.5%,
primarily due to the robustness of DMS. In the absence of outlier
filtering provided by RANSAC, a high ratio of outliers can pose
a significant challenge to PCR. The MCS technique show effctive
performences in removing the outliers.

TABLE 5
Registration results w/o RANSAC on 3DMatch (3DM) and 3DLoMatch
(3DLM). Boldfaced numbers highlight the best and the second best are

underlined.

Estimator RANSAC-50k weighted SVD LGR
Samples 5000 250 all
Data 3DM 3DL 3DM 3DL 3DM 3DL

Registration Recall (%) RR
FCGF 85.1 40.1 42.1 3.9 null null
D3Feat 81.6 37.2 37.4 2.8 null null
SpinNet 88.6 59.8 34.0 2.5 null null
Predator 89.0 59.8 50.0 6.4 null null
CoFiNet 89.3 67.5 64.6 21.6 87.6 64.8
GeoTransformer 92.0 75.0 86.5 59.9 91.5 74.0
PEAL 94.6 81.7 null null 94.3 81.2
DMS 95.2 82.3 90.3 68.4 94.8 81.4

Similarly, Table 3 presents the registration results of 3DMatch
and 3DLoMatch in various scenarios. It is evident from the table
that DMS consistently achieves the highest registration recall
and the lowest relative error across most scenarios. These results
demonstrate the robustness and accuracy of DMS in handling
different registration scenarios. The superior performance of DMS
further validates its effectiveness in LoR tasks.

KITTI. The KITTI odometry dataset [55] comprises a sequence
of 11 outdoor driving scenes captured by lidar sensors, we evaluate
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our method based on the protocol described in GeoTransformer
[37]. The Table 6 presents the comparison results with state-of-
the-art methods, including 3DFeat-Net , FCGF [44], D3Feat [45]
, SpinNet [41], Predator [35] , CoFiNet [36], and GeoTransformer
[37]. It is evident from the table that our method achieves a
registration recall rate comparable to the current state-of-the-art
approaches. It is worth noting that our algorithm does not excel
in relative error. This limitation arises because DMS is an explicit
algorithm, and controlling its parameters requires consideration of
an extremely large inlier system. As a future direction, researchers
can explore learning-based methods to automatically determine
suitable multi-scale settings, eliminating the need for manual
configuration of multi-scale hyperparameters.

TABLE 6
Registration results on KITTI odometry. Boldfaced numbers highlight

the best and the second best are underlined.

Model RTE(cm) RRE(°) RR(%)

RANSAC-50k
3DFeat-Net 25.9 0.25 96.0
FCGF 9.5 0.30 96.6
D3Feat 7.2 0.30 99.8
SpinNet 9.9 0.47 99.1
Preadator 6.8 0.27 99.8
CoFiNet 8.2 0.41 99.8
GeoTransformer 7.4 0.27 99.8
DMS 6.9 0.29 99.8

LGR
FMR ∼66 1.49 90.6
DGR ∼32 0.37 98.7
HRegNet ∼12 0.29 99.7
GeoTransformer 6.8 0.24 99.8
DMS 6.7 0.27 99.8

ModelNet. We conducted comparisons between our method
and five other algorithms on the ModelNet and ModelLoNet
datasets. The results of these comparisons are presented in Table 1.
The experiments on these datasets were conducted following the
experimental guidelines outlined by GeoTransformer [37]. From
the results, it can be seen that our algorithm has achieved the
lowest registration error in both ModelNet and ModelLoNet.

TABLE 7
Registration results on ModelNet40 and ModelLoNet. Boldfaced
numbers hightlight the best and the second best are underlined.

Model
ModelNet ModelLoNet

RRE RTE CD RRE RTE CD

Small Rotation
RPM-Net 2.357 0.028 0.00130 8.123 0.086 0.00611
RGM 4.548 0.049 0.00268 14.806 0.139 0.01482
Predator 2.064 0.023 0.00145 5.022 0.084 0.00734
CoFiNet 3.584 0.044 0.00205 6.992 0.091 0.00599
GeoTransformer 2.160 0.024 0.00143 3.638 0.064 0.00448
DMS 1.319 0.015 0.00086 2.266 0.030 0.00315

Large Rotation
RPM-Net 31.509 0.206 0.01074 51.478 0.346 0.01985
RGM 45.560 0.289 0.01697 68.724 0.442 0.03634
Predator 24.839 0.171 0.01940 46.990 0.378 0.05052
CoFiNet 10.496 0.084 0.00319 32.578 0.226 0.02273
GeoTransformer 6.436 0.047 0.00154 23.478 0.152 0.01296
DMS 5.538 0.043 0.00103 22.365 0.141 0.00963

4DMatch and 4DLoMatch. We conducted a comparison be-
tween DMS and four recent methods: D3Feat [45], Predator [35],
Lepard [57], and GeoTransformer [60], with the results detailed
in Table 8. DMS significantly outperforms D3Feat and Predator
in both high-overlap and low-overlap scenarios and achieves
performance very close to that of Lepard and GeoTransformer. It’s
important to note that Lepard benefits from a repositioning mech-
anism with coarse rigid registration, which effectively enhances
its performance. Without repositioning, our DMS consistently
exceeds Lepard across both benchmarks. Despite not being ex-
plicitly designed and optimized for handling deformation and non-
rigid registration, DMS demonstrates commendable performance
in non-rigid point cloud registration. In most instances, non-rigid
deformation can be approximated by a series of local rigid trans-
formations. Our MNFS is designed to capture the local rigidity
consistency between two point clouds, aiding in the extraction of
high-quality correspondences in non-rigid scenarios.

TABLE 8
Registration results on 4DMatch and 4DLoMatch. NIR and NFMR are
measured in %. Boldfaced numbers hightlight the best and the second

best are underlined.

Model
4DMatch 4DLoMatch

#Corr NIR NFMR #Corr NIR NFMR

D3Feat 697 55.3 56.1 204 21.3 28.1
Predator 698 59.3 56.8 480 25 32.1
Lepard 596 82.7 83.7 407 55.7 66.9
Lepard (w/o repos) 624 80.5 80.8 448 53.7 63.6
GeoTransformer 2331 82.2 83.2 1212 63.6 65.4
DMS 2653 81.9 83.0 1348 63.5 65.4

4.3 Ablation Experiment

In this section, our focus centers on conducting extensive abla-
tion research and analysis experiments to investigate the crucial
components of the DMS, namely MNFS and MCS. The evalua-
tions are performed across multiple datasets, including 3DMatch,
3DLoMatch, ModelNet, and ModelLoNet, with a meticulous
examination of their performance and impact. Furthermore, we
delve deeper into the examination of the effects of MNFS, MCS,
and DMS in other method frameworks, shedding light on the
contributions and significance of each component in improving
the overall performance of the algorithm. Finally, an essential
aspect of our analysis revolves around the assessment of the time
efficiency of the DMS algorithm.
Performance Analysis of MNFS and MCS in DMS Frame-
work. We independently assessed MNFS and MCS contributions
within the DMS framework. Table 9 displays results for FMR,
IR, and RR across different sampling numbers on 3DMatch and
3DLoMatch datasets. We found MNFS slightly improved FMR
by around 0.5% compared to MCS. MNFS consistently outper-
formed MCS in IR, often exceeding 1%. Remarkably, with 1000
sampling points, MNFS’s improvement was about twice that of
other settings. It is important to highlight that the impact of such
a substantial IR increase has limited effect on RR in the 3DMatch
dataset. However, in the case of 3DLoMatch, the increase in RR
is more pronounced. This phenomenon can be explained by the
fact that under high overlap, the inliers tend to cluster together,
with these internal points playing a crucial role in low-overlap
scenarios. Consequently, these results provide further evidence of
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the robustness of DMS, particularly in challenging situations with
low-overlap.

To assess the individual contributions of MNFS and MCS in
the DMS framework, we conducted separate experiments using
the ModelNet and ModelLoNet datasets. The results in Table
10 depict the relative error performance of each algorithm. The
data in the table reveals that MNFS yields a more substantial
improvement compared to MCS. Additionally, the improvement
achieved on the ModelLoNet dataset surpasses that on the Mod-
elNet dataset. It is important to note that DMS exhibits only a
slight advantage in scenarios involving low rotation compared to
those with large rotations. Hence, it can be inferred that rotation
factors do not significantly impact DMS during registration. Con-
sequently, DMS demonstrates adaptability not only to point clouds
with low overlap but also to those with substantial rotations.

TABLE 9
Performance boosting on 3DMatch and 3DLoMatch with MNFS w/o

peripheral points, MNFS, MCS, and DMS. Boldfaced numbers
hightlight the best.

Dataset 3DMatch 3DLoMatch

Sample 5000 2500 1000 500 250 5000 2500 1000 500 250

Feature Matching Recall (%) FMR

GeoTransformer 97.9 97.9 97.9 97.9 97.3 88.3 88.6 88.8 88.6 88.3

MNFS w/o
peripheral points

98.3 98.3 98.3 98.3 97.9 89.3 90.3 90.8 90.7 90.6

0.4↑ 0.4↑ 0.4↑ 0.4↑ 0.6↑ 1.0↑ 1.7↑ 2.0↑ 2.1↑ 2.3↑

MNFS
98.8 98.8 98.7 98.7 98.5 90.8 91.3 91.5 91.9 91.5

0.9↑ 0.9↑ 0.8↑ 0.8↑ 1.2↑ 2.5↑ 2.7↑ 2.7↑ 3.3↑ 3.2↑

MCS
98.4 98.3 98.4 98.4 98.1 90.4 90.9 90.8 90.7 90.2

0.5↑ 0.4↑ 0.5↑ 0.5↑ 0.8↑ 2.1↑ 2.3↑ 2.0↑ 2.1↑ 1.9↑

DMS
99.1 99.2 99.2 99.1 98.8 92.3 92.8 93.1 93.5 93.3
1.2↑ 1.3↑ 1.3↑ 1.2↑ 1.5↑ 4.0↑ 4.2↑ 4.3↑ 4.9↑ 5.0↑

Inlier Ratio (%) IR

GeoTransformer 71.9 75.2 76.0 82.2 85.1 43.5 45.3 46.2 52.9 57.7

MNFS w/o
peripheral points

72.6 78.5 81.9 83.8 86.5 45.0 47.3 53.5 56.1 60.1

0.7↑ 3.3↑ 5.9↑ 1.6↑ 1.4↑ 1.5↑ 2.0↑ 7.3↑ 3.2↑ 2.4↑

MNFS
73.2 79.1 83.3 85.6 87.2 46.2 48.9 56.1 58.5 61.3

1.3↑ 3.9↑ 7.3↑ 3.4↑ 2.1↑ 2.7↑ 3.6↑ 9.9↑ 5.6↑ 3.6↑

MCS
72.7 77.7 79.6 84.9 86.3 45.2 46.1 48.2 54.8 60.1

0.8↑ 2.5↑ 3.6↑ 2.7↑ 1.2↑ 1.7↑ 0.8↑ 2.0↑ 1.9↑ 2.4↑

DMS
73.6 80.8 85.5 87.3 88.1 47.8 51.6 58.2 61.5 63.8
1.7↑ 5.6↑ 9.5↑ 5.1↑ 3.0↑ 4.3↑ 6.3↑ 12.0↑ 8.6↑ 6.1↑

Registration Recall (%) RR

GeoTransformer 92.0 91.8 91.8 91.4 91.2 75.0 74.8 72.2 74.1 73.5

MNFS w/o
peripheral points

93.7 93.1 92.6 92.8 92.7 78.2 77.6 77.1 77.4 76.0

1.7↑ 1.3↑ 0.8↑ 1.4↑ 1.5↑ 3.2↑ 2.8↑ 4.9↑ 3.3↑ 2.5↑

MNFS
94.4 93.7 93.3 93.7 93.5 80.7 79.8 79.6 79.4 78.1

2.4↑ 1.9↑ 1.5↑ 2.3↑ 2.3↑ 5.7↑ 5.0↑ 7.4↑ 5.3↑ 4.6↑

MCS
93.4 92.6 92.3 92.5 92.5 77.5 77.2 76.7 76.5 74.8

1.4↑ 0.8↑ 0.5↑ 1.1↑ 1.3↑ 2.5↑ 2.4↑ 4.5↑ 2.4↑ 1.3↑

DMS
95.2 94.3 94.1 95.0 94.6 82.3 81.8 81.5 81.2 80.7
3.2↑ 2.5↑ 2.3↑ 3.6↑ 3.4↑ 7.3↑ 7.0↑ 9.3↑ 7.1↑ 7.2↑

Additionally, we conducted experiments specifically to assess
the impact of peripheral points on registration accuracy. This
involved removing peripheral points from overlapping areas within
the MNFS framework. The results, as detailed in the Table 9
and Table 10, reveal that the MNFS variant without peripheral
points (labeled ’MNFS w/o peripheral points’) consistently under-
performs compared to the full MNFS method, particularly in sce-
narios with low overlap. For example, in the 3DLoMatch dataset
at the 5000 sample size, MNFS w/o peripheral points registers a
FMR of 89.3%, slightly lower than MNFS at 90.8%. Similarly, the
IR and RR metrics also reflect lower scores when peripheral points
are excluded, particularly in low-overlap scenarios. These findings
underscore the critical role that peripheral points play in enhancing
registration performance, their presence can significantly enhance

TABLE 10
Performance boosting on ModelNet and ModelLoNe with MNFS w/o

peripheral points, MNFS, MCS, and DMS. Boldfaced numbers
hightlight the best.

Model
ModelNet ModelLoNet

RRE RTE CD RRE RTE CD

Small Rotation

GeoTransformer 2.160 0.024 0.00143 3.638 0.064 0.00448

MNFS w/o
peripheral points

1.753 0.022 0.00121 3.186 0.049 0.00385

0.407↑ 0.002↑ 0.00022↑ 0.452↑ 0.015↑ 0.00063↑

MNFS
1.526 0.019 0.00103 2.863 0.043 0.00359

0.634↑ 0.005↑ 0.00040↑ 0.775↑ 0.021↑ 0.00089↑

MCS
1.723 0.021 0.00117 3.172 0.054 0.00396

0.437↑ 0.003↑ 0.00026↑ 0.466↑ 0.010↑ 0.00052↑

DMS
1.319 0.015 0.00086 2.266 0.030 0.00315

0.841↑ 0.009↑ 0.00057↑ 1.372↑ 0.034↑ 0.00133↑
Large Rotation

GeoTransformer 6.436 0.047 0.00154 23.478 0.152 0.01296

MNFS w/o
peripheral points

6.184 0.046 0.00131 23.039 0.149 0.01192

0.252↑ 0.001↑ 0.00023↑ 0.439↑ 0.003↑ 0.00104↑

MNFS
5.882 0.045 0.00121 22.805 0.145 0.01085

0.554↑ 0.002↑ 0.00033↑ 0.673↑ 0.007↑ 0.00211↑

MCS
6.081 0.046 0.00135 23.061 0.148 0.01149

0.355↑ 0.001↑ 0.00019↑ 0.417↑ 0.004↑ 0.00147↑

DMS
5.538 0.043 0.00103 22.365 0.141 0.00963

0.898↑ 0.004↑ 0.00051↑ 1.113↑ 0.011↑ 0.00333↑

the accuracy and reliability of feature matching, especially in
challenging low-overlap conditions.
Evaluation of DMS in Other Method Frameworks. Assess-
ments were conducted using several state-of-the-art deep learning
methods, namely SpinNet [41], Predator [35], and CoFiNet [36],
all integrated with DMS. Each method underwent testing with
varying numbers of samples, representing the number of sampling
points or corresponding points. The results are shown in Table
11. It is important to note that DMS and its constituents, MNFS
and MCS, demonstrated significant improvements in registration
recall across all the tested methods on both the 3DMatch and

TABLE 11
Performance boosting for other method frameworks when combined
with MNFS, MCS, and DMS. Boldfaced numbers hightlight the best.

Dataset 3DMatch RR(%) 3DLoMatch RR(%)

Samples 5000 2500 1000 500 250 5000 2500 1000 500 250

SpinNet 88.6 86.6 85.5 83.5 70.2 59.8 54.9 48.3 39.8 26.8

SpinNet+MNFS
91.2 89.7 89.3 88.2 77.8 62.4 59.4 56.3 49.1 38.2
2.6↑ 3.1↑ 3.8↑ 4.7↑ 7.6↑ 2.6↑ 4.5↑ 8.0↑ 9.3↑ 11.4↑

SpinNet+MCS
90.4 88.6 88.4 86.8 75.3 61.2 58.3 53.4 45.5 33.0
1.8 ↑ 2.0↑ 2.9↑ 3.3↑ 5.1↑ 1.4↑ 3.4↑ 5.1↑ 5.7↑ 6.2↑

SpinNet+DMS
94.1 92.5 92.2 91.3 82.8 65.2 63.2 60.6 54.8 43.7
5.5↑ 5.9↑ 6.7↑ 7.8↑ 12.6↑ 5.4↑ 8.3↑ 12.3↑ 15.0↑ 16.9↑

Predator 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1

Predator+MNFS
92.6 93.0 93.6 91.8 89.3 66.3 67.9 68.6 66.4 64.2
3.6↑ 3.1↑ 3.0↑ 3.3↑ 2.7↑ 6.5↑ 6.7↑ 6.2↑ 5.6↑ 6.1↑

Predator+MCS
91.2 91.2 92.4 90.3 88.1 64.2 65.4 66.1 64.8 62.8
2.2↑ 1.3↑ 1.8↑ 1.8↑ 1.5↑ 4.4↑ 4.2↑ 3.7↑ 4.0↑ 4.7↑

Predator+DMS
93.4 94.1 94.6 93.2 91.0 68.3 70.3 72.8 70.6 68.1
4.4↑ 4.2↑ 4.0↑ 4.7↑ 4.4↑ 8.5↑ 9.1↑ 10.4↑ 9.8↑ 10.0↑

CoFiNet 89.3 88.9 88.4 87.4 87 67.5 66.2 64.2 63.1 61.0

CoFiNet+MNFS
92.6 92.0 91.4 91.3 90.2 73.3 72.3 70.5 69.7 68.1
3.3↑ 3.1↑ 3.0↑ 3.9↑ 3.2↑ 5.8↑ 6.1↑ 6.3↑ 6.6↑ 7.1↑

CoFiNet+MCS
91.4 91.1 90.0 90.5 89.4 70.7 69.9 68.8 68.2 66.8
2.1↑ 2.2↑ 1.6↑ 3.1↑ 2.4↑ 3.2↑ 3.7↑ 4.6↑ 5.1↑ 5.8↑

CoFiNet+DMS
94.8 94.0 93.8 93.1 92.7 76.2 75.9 74.7 73.2 72.5
5.5↑ 5.1↑ 5.4↑ 5.7↑ 5.7↑ 8.7↑ 9.7↑ 10.5↑ 10.1↑ 11.5↑
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3DLoMatch datasets. Based on the data presented in Table 11, it is
evident that both DMS and MNFS exhibit an improvement effect
of over 5% on the 3DMatch dataset, while the enhancement on the
3DLoMatch dataset is nearly twice as much as that on 3DMatch.
This finding once again validates that DMS is better suited for
cloud registration with low overlapping points. Furthermore, it
can be observed that when the number of sampling points reaches
the extreme value of 250, all the proposed methods, including
DMS, MNFS, and MCS, show the most substantial improvements.
Notably, when SpinNet is tested with 250 sampling points on
the 3DMLoMatch dataset, the application of DMS leads to a
remarkable increase of 16.9%.
Evaluate the effectiveness of multi-scale. We evaluated the
effectiveness of our multi-scale design in MNFS and MCS com-
ponents on 3DMatch and 3DLoMatch, and the results of the
experiments are shown in Table 12. It shows the registration recall
percentage for various configurations of h values in MCS and
MNFS. Configurations range from no MNFS or MCS components
(null), to a single scale, and to combinations of multiple scales. It
can be seen from the data in the Table 12 that the multi-scale
design greatly improves the registration recall rate. Specifically,
when MCS is [3,5,8] and MNFS is [2,4,8,16] obtains the highest
recall rate of 95.2% on 3DMatch, and is the same as MCS on
3DLoMatch when MNFS is [2, 4,8] scale tied for the highest recall
rate of 82.3%, which highlights the advantages of comprehensive
multi-scale configuration. Furthermore, the data in the Table 12
shows that recall increases as more scales are included, suggesting
that wider scales enable the model to capture a more diverse set
of features, thereby improving registration accuracy.

TABLE 12
Evaluate the effectiveness of our multi-scale design in both the MNFS

and MCS components. Boldfaced numbers hightlight the best.

h of MCS null [3] [5] [8] [3,5] [3,5,8]
h of MNFS Registration Recall (%) of 3DMatch

null 92.0 92.4 92.5 92.4 92.9 93.4
[2] 89.9 89.8 90.7 91.4 92.1 92.8
[4] 88.8 89.5 90.5 90.8 91.8 92.3
[8] 89.2 89.7 90.6 90.4 91.4 92.1

[2,4] 92.0 92.3 92.6 92.8 93.3 93.7
[2,4,8] 93.5 93.3 93.7 93.5 93.9 94.2

[2,4,8,16] 94.4 94.6 94.7 94.6 94.9 95.2
h of MNFS Registration Recall (%) of 3DLoMatch

null 75.0 75.4 75.7 76.2 76.8 77.5
[2] 74.7 74.5 74.9 75.6 76.0 76.7
[4] 73.1 73.4 74.6 74.7 75.1 75.3
[8] 73.7 74 74.2 74.2 75.1 75.8

[2,4] 75.5 76.3 76.8 76.8 78.3 79.5
[2,4,8] 78.2 78.9 79.4 78.8 81.1 82.3

[2,4,8,16] 80.7 81.0 81.3 81.2 81.7 82.3

In addition, Table 12 further proves the direct effectiveness
of peripheral points in improving registration accuracy. Table 12
shows that as the value of h increases, that is, as the multi-scale
range expands, the registration recall rate increases significantly.
Especially under the most complex configuration [2, 4, 8, 16], the
recall rate reaches the highest, which shows that the peripheral
points contained at different scales provide rich information for
the registration process and help the model to better capture the
correspondence between point clouds. By considering peripheral
points at multi-scales, our method not only improves performance
in 3DMatch but also shows superiority in more challenging low-
overlap scenarios 3DLoMatch adaptability and accuracy. This is

mainly due to the fact that multi-scale design effectively utilizes
peripheral points that may show higher similarity at smaller scales
by aggregating information at different scales without affecting the
similarity of internal points at other scales. This approach ensures
that peripheral points can be accurately identified and utilized
even when the overlapping areas are small, thereby improving
the overall registration performance.

Overall, the data in this Table 12 highlight the effectiveness of
multi-scale designs in including and exploiting peripheral points,
and the direct contribution of these peripheral points to improving
the accuracy and robustness of point cloud registration methods.
Especially in low-overlap scenarios (3DLoMatch), the recall rate
is significantly improved.
Time consumption of DMS. We conducted an analysis experi-
ment on the time consumption of DMS. The experiment involved
calculating the average time (ms) for processing all point clouds in
the 3DMatch dataset. It is important to note that, in order to assess
the impact of each parameter on DMS, the parameters in Table
13 were set appropriately, focusing on parameter influence rather
than robustness considerations. From Table 13, the following
observations can be made: 1) MNFS can be completed within
tens of milliseconds; 2) MCS contributes significantly to the time
consumption of DMS, but it remains controllable within 400ms;
3) MCS is influenced by parameters K and h, with K having a
much higher impact than h; 4) MNFS is greatly affected by the
parameters d and h.

TABLE 13
Average consumed time (ms) on the 3DMatch dataset.

h K hinit d MNFS MCS DMS

[2, 4, 8, 16]
[256, 128, 64, 32, 16]

[3, 5, 8]
256

35.453 363.042 398.495

[2, 3, 4, 5]

26.064 370.174 396.238

[64, 32, 16, 8, 4]

18.151 103.331 121.481

[8, 16, 32]
18.385 101.452 119.837

1024 41.961 101.676 143.637

4.4 Visual Experiment

We show the visualization of 3D rigid registration, as shown in
Fig. 7. Note that to better visualize the quality of registration,
simultaneous rotations were applied to both registration results and
ground truth for enhanced visual clarity. These modifications do
not impact the core objective of our methodology, which remains
the precise alignment of the source point cloud to the target point
cloud. This adjustment, made purely for visualization purposes,
may lead to perceived discrepancies when directly compared
with the input configurations, but it does not change the actual
alignment of the source to the target point cloud.

It can be seen that the DMS method consistently produces
results that closely match the Ground Truth. This is especially
noticeable in complex datasets like 3DLoMatch and KITTI. For
instance, in the 3DLoMatch dataset, DMS appears to maintain
the structural relationships of the chairs and tables better than
other methods. Similarly in the 3DMatch and ModelNet dataset.
This robust performance is likely attributed to the unique design
of the DMS, which incorporates a double-layer multi-scale star-
graph to optimize the registration process, effectively handling
the challenges of low-overlap scenarios where traditional methods
might struggle. Additionally, the multi-scale approach of DMS
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Input Ground Truth Predator GeoTransformer DMS Input Ground Truth Predator GeoTransformer DMS
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3DLoMatch

KITTI
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Fig. 7. Comprehensive visualization evaluation of different point cloud registration techniques across multiple datasets: 3DMatch, 3DLoMatch,
KITTI, and ModelNet. Each row represents a dataset and each column corresponds to a step or method in the registration process: Input point
clouds, Ground Truth alignment, and the results from Predator [35], GeoTransformer [37], and DMS. The source point clouds P are depicted in
yellow, and the target point clouds Q in blue.

facilitates a more detailed understanding of the local geometries,
which is critical for accurate registration of 3D point clouds.

Fig. 8 presents a visual comparison of point cloud registration
outcomes using different methods on the 4DMatch and 4DLo-
Match dataset. The first column displays the input point clouds
with varying degrees of overlap, labeled with the specific model
and the percentage of overlap. Subsequent columns illustrate
the alignment results achieved by Lepard, GeoTransformer, and
DMS respectively. In each model, the point clouds are color-
coded to distinguish between the source and target datasets, with
yellow representing the source and blue the target. Green lines
indicate correct correspondences, while red lines indicate incorrect
ones. Evidently, DMS, as shown in the final column, effectively
aligns the point clouds across all tested scenarios, including those
with lower overlap percentages. The results indicate that DMS
maintains structure integrity and alignment accuracy, comparable
to or surpassing the other methods, showcasing its proficiency in
non-rigid point cloud registration tasks.

5 CONCLUSION

This study presented a robust LoR methodology founded upon
the DMS framework. Following the coarse-to-fine strategy, we
initially extract super-points and their respective features. Sub-
sequently, we proposed the MNFS to establish multi-scale star
graphs for these super-points while simultaneously fusing their
features. By leveraging the neighborhoods and features of MNFS,
we performed consistent super-point matching, yielding the initial

4DMatch(bear)-Overlap:65.91%

4DMatch(douglas)-Overlap:37.73%

4DLoMatch(zombie)-Overlap:25.71%

4DLoMatch(sheep)-Overlap:20.38%

Inupt Aligned Lepard GeoTransformer DMS

Fig. 8. Comparative Visualization of Non-Rigid PCR Using Lepard [57],
GeoTransformer [60], and DMS on the 4DMatch and 4DLoMatch Bench-
mark.

correspondence set. Subsequently, we introduced the construction
of MMS based on these initial correspondences. We then identified
the correspondence set Mcz by leveraging the information within
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MMS. Building upon Mcz
, we proceeded to construct MCS.

Within the MCS framework, we introduced an effective mismatch
elimination strategy, ultimately resulting in the establishment of a
robust super-point correspondence. Finally, the points correspond-
ing to each pair of super points are registered to restore the optimal
transformation matrix. The results of the experiments achieved
state-of-the-art results.
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